# Search results for: Teresa W. Haynes

Journal of Combinatorial Optimization > 2018 > 36 > 2 > 416-433

*G*be a graph with vertex set

*V*and no isolated vertices, and let

*S*be a dominating set of

*V*. The set

*S*is a semitotal dominating set of

*G*if every vertex in

*S*is within distance 2 of another vertex of

*S*. And,

*S*is a semipaired dominating set of

*G*if

*S*can be partitioned into 2-element subsets such that the vertices in each 2-set are at most distance two apart. The semitotal domination number $$\gamma...

Discussiones Mathematicae Graph Theory > 2017 > 38 > 1 > 203-215

Discrete Applied Mathematics > 2017 > 223 > C > 52-63

Discrete Applied Mathematics > 2017 > 221 > C > 46-53

Discrete Mathematics > 2017 > 340 > 2 > 31-38

Discussiones Mathematicae Graph Theory > 2016 > 36 > 4 > 1043-1050

Discrete Applied Mathematics > 2016 > 211 > C > 23-29

Discrete Applied Mathematics > 2016 > 207 > C > 39-44

Discrete Applied Mathematics > 2016 > 204 > C > 22-28

Graphs and Combinatorics > 2016 > 32 > 1 > 79-92

Aequationes mathematicae > 2016 > 90 > 2 > 355-366

*ve*-domination to some other domination parameters, answering in the affirmative four open questions posed in the 2007 PhD thesis by Lewis. Then we provide an upper bound for...

Bulletin of the Malaysian Mathematical Sciences Society > 2017 > 40 > 4 > 1443-1454

*V*and edge set

*E*. A mixed Roman dominating function (MRDF) of

*G*is a function $$f: V\cup E\rightarrow \{0,1,2\}$$ f:V∪E→{0,1,2} satisfying the condition every element $$x\in V\cup E$$ x∈V∪E for which $$f(x)= 0$$ f(x)=0 is adjacent or incident to at least one element $$y\in V\cup E$$ y∈V∪E for which $$f(y) = 2$$ f(y)=2 . The weight of...

Graphs and Combinatorics > 2015 > 31 > 5 > 1163-1176

Journal of Combinatorial Optimization > 2015 > 30 > 3 > 579-595

Discrete Applied Mathematics > 2014 > 178 > Complete > 27-32

Discrete Applied Mathematics > 2014 > 177 > Complete > 88-94

Discussiones Mathematicae Graph Theory > 2014 > 34 > 3 > 603-612

Discrete Applied Mathematics > 2014 > 169 > Complete > 135-139

Central European Journal of Mathematics > 2014 > 12 > 12 > 1882-1889

*G*be a diameter-2-critical graph of order

*n*. Murty and Simon conjectured that the number of edges in

*G*is at most ⌊

*n*

^{2}/4⌋ and that the extremal graphs are the complete bipartite graphs

*K*

_{⌊n/2⌋,⌊n/2⌉}. Fan [Discrete Math. 67 (1987), 235–240] proved the conjecture for

*n*≤ 24 and for

*n*= 26,...

Discrete Applied Mathematics > 2013 > 161 > 18 > 2885-2893