# Discrete Applied Mathematics

Discrete Applied Mathematics > 1995 > 56 > 1 > 75-82

Discrete Applied Mathematics > 1995 > 56 > 1 > 61-74

^{k}

_{v}for the universal cover of G, rooted at a vertexv and truncated at depth k. In this paper we...

Discrete Applied Mathematics > 1995 > 56 > 1 > 49-60

^{2}) time and O(kn) space. The method relies heavily on the topological plane sweep of Edelsbrunner and Guibas (1989).

Discrete Applied Mathematics > 1995 > 56 > 1 > 19-35

Discrete Applied Mathematics > 1995 > 56 > 1 > 9-18

Discrete Applied Mathematics > 1995 > 56 > 1 > 37-48

Discrete Applied Mathematics > 1995 > 56 > 1 > 1-8

Discrete Applied Mathematics > 1995 > 56 > 1 > 93-98

Discrete Applied Mathematics > 1995 > 56 > 1 > 87-91

Discrete Applied Mathematics > 1995 > 56 > 1 > 83-86

_{i}

_{j}] M(n) ifw

_{i}

_{j}= 0 for all i,j such that i - j ≠ 1. Ann n matrix W = [w

_{i}

_{j}] M(n, α) if min

_{i}

_{-}

_{j}...

Discrete Applied Mathematics > 1995 > 56 > 2-3 > 323-331

Discrete Applied Mathematics > 1995 > 56 > 2-3 > 267-295

_{1}, ,s

_{r},t

_{1}, ,t

_{r}are vertices of G such that each pair {s

_{i}, t

_{i}} belongs to the boundary of some of I, J, K, O, and that the graph (VG, EG {{s

_{1}, t

_{1}}, ,{s

_{r},t

_{r}...

Discrete Applied Mathematics > 1995 > 56 > 2-3 > 137-155

_{1}), ,p(e

_{E})) is a vector consisting of vector consisting of failure probabilities p(e

_{i})'s of all edges e

_{i}...

Discrete Applied Mathematics > 1995 > 56 > 2-3 > 231-243

^{2}+ t)λ) where n is the size of the ground set of the matroids, λ is the number of common bases, and t is time to make one pivot operation. The...

Discrete Applied Mathematics > 1995 > 56 > 2-3 > 333-343

_{i}

_{j}and...

Discrete Applied Mathematics > 1995 > 56 > 2-3 > 157-179

Discrete Applied Mathematics > 1995 > 56 > 2-3 > 311-321

Discrete Applied Mathematics > 1995 > 56 > 2-3 > 245-265

Discrete Applied Mathematics > 1995 > 56 > 2-3 > 181-214