# Quantum Information Processing

Quantum Information Processing > 2002 > 1 > 1-2 > 135-144

**PACS:**03.67.Lx, 03.65.Bz

Quantum Information Processing > 2002 > 1 > 1-2 > 45-53

*reinterpretation*of the DMRG in terms of the language and tools of quantum information science which allows us to rederive the DMRG in...

Quantum Information Processing > 2002 > 1 > 1-2 > 35-43

**PACS:**03.67.Hk

Quantum Information Processing > 2002 > 1 > 1-2 > 91-106

Quantum Information Processing > 2002 > 1 > 1-2 > 129-134

**PACS:**03.67.-a, 03.67.Lx, 03.67.Hk

Quantum Information Processing > 2002 > 1 > 1-2 > 5-12

*approximate*quantum error correction is possible.

**PACS:**03.67.H, 03.65.U

Quantum Information Processing > 2002 > 1 > 1-2 > 13-18

Quantum Information Processing > 2002 > 1 > 1-2 > 107-127

*negative*. This paper re-opens the case: we will discuss solutions to a few simple problems which suggest that

*quantum computing is theoretically capable of computing uncomputable functions*. Turing proved...

Quantum Information Processing > 2002 > 1 > 1-2 > 1-4

**PACS:**03.67.Hk

Quantum Information Processing > 2002 > 1 > 1-2 > 73-89

*independently*obtained states of knowledge together to form a new state of knowledge, which is the state which would be possessed by someone having the combined information of both observers. Moreover, this combined state of knowledge can be found without reference to the manner...

Quantum Information Processing > 2002 > 1 > 1-2 > 55-72

*differences*, which can be degenerate even if the energies themselves...

Quantum Information Processing > 2002 > 1 > 1-2 > 19-34

Quantum Information Processing > 2002 > 1 > 3 > 207-224

Quantum Information Processing > 2002 > 1 > 3 > 155-182

*N*physical qubits out of which

*N*/2 are ancillas fixed in the |1 state, the other...

Quantum Information Processing > 2002 > 1 > 3 > 145-154

*k*string given an oracle which returns information about the number of correct components in a query, specifically, the Hamming distance between the query and the solution, modulo

*r*= max{2, 6 −

*k*}. Classically this problem requires Ω(

*n*log

_{ r }

*k*) queries. For

*k*∈ {2, 3, 4}, we construct quantum algorithms requiring only a single quantum query. For

*k*>...

Quantum Information Processing > 2002 > 1 > 3 > 183-206

*stochastic mechanics*and on the

*theory of Schrödinger bridges*is presented. Given the initial and final states

*ψ*

_{0}and

*ψ*

_{1}, respectively, the desired quantum evolution is constructed with the aid of a

*reference*quantum evolution. The Nelson process corresponding to the latter evolution is used as reference process in a...

Quantum Information Processing > 2002 > 1 > 4 > 225-242

Quantum Information Processing > 2002 > 1 > 4 > 283-302

Quantum Information Processing > 2002 > 1 > 4 > 257-281

Quantum Information Processing > 2002 > 1 > 4 > 253-256

**PACS:**03.67.-a