This research evaluates an integrated technique for the degradation of perchloroethylene (PCE) using a combination of zero-valent metal and an anaerobic microbial community. The microbial community was obtained from river sediment through a series of cultivation and enrichment processes, and was able to successfully convert PCE to ethylene. The degradation tests were carried out in five groups of reactors, i.e. Zn (zero-valent zinc), Fe (zero-valent iron), MB (a microbial community), ZnMB (zinc and a microbial community) and FeMB (iron and a microbial community). The results suggested that the FeMB system had the highest efficiency in removing PCE (about 99.9% after 24 days), followed by Zn (98.5%), ZnMB (84.8%), Fe (76.9%) and MB (49.6%). The degradation kinetics of PCE could be described by a pseudo-first-order reaction; the apparent reaction rate constants were 0.231, 0.187, 0.135, 0.076, 0.031 days−1 for the Zn, FeMB, ZnMB, Fe, and MB systems, respectively. Much more Cl− was detected as a by-product in the degradation tests using FeMB or ZnMB than using Fe or Zn. The results implied that not only PCE, but also the reaction intermediates, e.g., trichloroethylene (TCE) and dichloroethylenes (DCE isomers) may have been dechlorinated in the FeMB and ZnMB systems. Results suggest that the presence of the microbial community in the FeMB and ZnMB systems may not only affect the removal efficiency of PCE, but can also change the reaction pathways in the dechlorination process. The integrated technique combining the iron and the microbial community showed better degradation efficiency than the others; it may be viewed as an environmentally desirable remediation.