This paper presents an efficient design approach for band-pass post filters in waveguides, based on mode-matching technique. With this technique, the characteristics of symmetrical cylindrical post arrangements in the cross-section of the considered waveguides can be analyzed accurately and quickly. Importantly, the approach is applicable to post filters in waveguide but can be extended to Substrate Integrated Waveguide (SIW) technologies. The fast computations provide accurate relationships for the K factors as a function of the post radii and the distances between posts, and allow analyzing the influence of machining tolerances on the filter performance. The computations are used to choose reasonable posts for designing band-pass filters, while the error analysis helps to judge whether a given machining precision is sufficient. The approach is applied to a Chebyshev band-pass post filter and a band-pass SIW filter with a center frequency of 10.5 GHz and a fractional bandwidth of 9.52% with verification via full-wave simulations using HFSS and measurements on manufactured prototypes.