We present an improved cooling for a high power density UV LED module for a wavelength of 395 nm. The module consists of 98 LED chips soldered on a thick film printed alumina substrate on an area of 2.11 cm2. We investigated cooling by a commercial water cooler as well as by a surface micro cooler developed by our own. Further we describe a technology to replace alumina by aluminum as substrate material. A module consisting of 25 UV LEDs was optically characterized without and with liquid encapsulation. Finally we conducted numerical studies to develop an easily producible, sufficiently powerful, and robust water cooler. Based on the results we present a water cooler design with cooling channels embedded in the aluminum substrate of an LED module, removing the interface between LED substrate and heat sink.