Larval flannelmouth sucker (Catostomus latipinnis) were exposed to arsenate, boron, copper, molybdenum, selenate, selenite, uranium, vanadium, and zinc singly, and to five mixtures of five to nine inorganics. The exposures were conducted in reconstituted water representative of the San Juan River near Shiprock, New Mexico. The mixtures simulated environmental ratios reported for sites along the San Juan River (San Juan River backwater, Fruitland marsh, Hogback East Drain, Mancos River, and McElmo Creek). The rank order of the individual inorganics, from most to least toxic, was: copper > zinc > vanadium > selenite > selenate > arsenate > uranium > boron > molybdenum. All five mixtures exhibited additive toxicity to flannelmouth sucker. In a limited number of tests, 44-day-old and 13-day-old larvae exhibited no difference in sensitivity to three mixtures. Copper was the major toxic component in four mixtures (San Juan backwater, Hogback East Drain, Mancos River, and McElmo Creek), whereas zinc was the major toxic component in the Fruitland marsh mixture, which did not contain copper. The Hogback East Drain was the most toxic mixture tested. Comparison of 96-h LC 50 values with reported environmental water concentrations from the San Juan River revealed low hazard ratios for arsenic, boron, molybdenum, selenate, selenite, uranium, and vanadium, moderate hazard ratios for zinc and the Fruitland marsh mixture, and high hazard ratios for copper at three sites and four environmental mixtures representing a San Juan backwater, Hogback East Drain, Mancos River, and McElmo Creek. The high hazard ratios suggest that inorganic contaminants could adversely affect larval flannelmouth sucker in the San Juan River at four sites receiving elevated inorganics.