The effect of Cal-Red on the structure of human serum albumin (HSA) was studied using Resonance light scattering (RLS), Fourier transformed Infrared (FT-IR) and Circular dichroism (CD) spectroscopic methods. The RLS spectroscopic results show that the RLS intensity of HSA was significantly increased in the presence of Cal-Red. The binding parameters of HSA with Cal-Red were studied at different temperatures of 289, 299, 309 and 319K at pH 4.1. It is indicated by the Scatchard plots that the binding constant K decreased from 4.03×10 8 to 7.59×10 7 l/mol and the maximum binding number N decreased from 215 to 152 with increasing the temperature, respectively. The binding process was exothermic and spontaneous, as indicated by the thermodynamic analyses, and the major part of the binding energy is hydrophobic interaction. The enthalpy change ΔH 0 , the free energy change ΔG 0 and the entropy change ΔS 0 of 289K were calculated to be −42.75kJ/mol, −47.56kJ/mol and 16.66J/molK, respectively. The alterations of protein secondary structure in the presence of Cal-Red in aqueous solution were quantitatively calculated from FT-IR and CD spectroscopy with reductions of α-helices content about 5%, β-turn from 10% to 2% and with increases of β-sheet from 38% to 51%.