# Search results

Boundary Value Problems > 2019 > 2019 > 1 > 1-21

Frontiers of Mathematics in China > 2019 > 14 > 1 > 177-201

^{n}, which includes the classical Orlicz-Sobolev space, the weighted Sobolev space, and the variable exponent Sobolev space as special cases, in terms of sharp ball averaging functions. Even in a special case, namely, the variable exponent Sobolev space, the obtained result in this article improves the corresponding result...

Rendiconti del Circolo Matematico di Palermo Series 00002 > 2018 > 67 > 2 > 267-289

Monatshefte für Mathematik > 2016 > 181 > 2 > 485-500

Nonlinear Analysis > 2015 > 127 > Complete > 196-205

ANNALI DELL'UNIVERSITA' DI FERRARA > 2015 > 61 > 2 > 241-253

Journal of Mathematical Analysis and Applications > 2014 > 418 > 1 > 425-443

Discussiones Mathematicae, Differential Inclusions, Control and Optimization > 2014 > 34 > 1 > 15-39

Annali di Matematica Pura ed Applicata ( 01923 -) > 2014 > 193 > 1 > 133-161

Nonlinear Analysis > 2013 > 93 > Complete > 132-146

Mediterranean Journal of Mathematics > 2013 > 10 > 3 > 1353-1367

Boundary Value Problems > 2013 > 2013 > 1 > 1-13

**MSC:**35D05, 35J60, 35J70.

Computers and Mathematics with Applications > 2012 > 63 > 4 > 751-763

Mediterranean Journal of Mathematics > 2012 > 9 > 1 > 211-223

*p*(

*x*)-Laplacian-like operators, originated from a capillary phenomena. Especially, an existence criterion for infinite many pairs of solutions for the problem is obtained.

Opuscula Mathematica > 2012 > Vol. 32, no. 3 > 439-454

Schedae Informaticae > 2012 > Vol. 21 > 41--54

Acta Mathematica Scientia > 2011 > 31 > 5 > 1786-1802

Nonlinear Analysis: Real World Applications > 2011 > 12 > 4 > 2304-2318

Mathematische Nachrichten > 284 > 5‐6 > 639 - 652

*p*(

*x*)‐Laplacian Dirichlet problems with discontinuous nonlinearities. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim