# Search results

Results in Mathematics > 2019 > 74 > 4 > 1-13

*G*is an Abelian group,

*E*a vector space, and

*n*a positive integer, is called generalized multi-quadratic if it is generalized quadratic in each variable. In this paper, we prove the stability of generalized multi-quadratic mappings in Lipschitz spaces. The results of the present paper improve and extend some existing results.

Mediterranean Journal of Mathematics > 2018 > 15 > 4 > 1-21

Fuzzy Sets and Systems > 2018 > 334 > C > 83-93

Set-Valued and Variational Analysis > 2019 > 27 > 1 > 295-304

Bulletin of the Malaysian Mathematical Sciences Society > 2019 > 42 > 3 > 835-846

Journal of Differential Equations > 2017 > 262 > 3 > 2106-2134

Fuzzy Sets and Systems > 2016 > 295 > C > 57-71

Information Sciences > 2016 > 330 > C > 157-174

Results in Mathematics > 2016 > 70 > 1-2 > 163-172

Journal of Fixed Point Theory and Applications > 2016 > 18 > 1 > 133-145

Aequationes mathematicae > 2016 > 90 > 2 > 381-391

*X*be an arbitrary set. We characterize all interval-valued functions $${A:X\to 2^\mathbb{R}}$$ A : X → 2 R for which a multifunction $${F:(0,\infty)\times X\to 2^X}$$ F : ( 0 , ∞ ) × X → 2 X of the form $${F(t,x)=A^{-}\big(A(x)+\min \{t,q-\inf A(x)\}\big)}$$ F ( t , x ) = A - ( A ( x ) + min { t , q - inf A ( x ) } ) , where $${q=\sup A(X)}$$...

Topology and its Applications > 2015 > 183 > Complete > 18-35

Set-Valued and Variational Analysis > 2015 > 23 > 3 > 547-557

Aequationes mathematicae > 2015 > 89 > 3 > 791-802

Topology and its Applications > 2014 > 171 > Complete > 35-40

Journal of Mathematical Analysis and Applications > 2013 > 400 > 2 > 505-509

Aequationes mathematicae > 2013 > 85 > 3 > 421-428

*H*+

*tH*

^{2}= (

*I*+

*tH*) ○

*H*,

*t*≥ 0 is a necessary and sufficient condition under which the family {

*F*

^{ t },

*t*≥ 0} of set-valued functions $${F^t(x):=\sum_{n=0}^{\infty} \frac{t^n}{n!}H^n(x), x \in K}$$ is an iteration semigroup. We present a simple proof of a generalization of this result, independent of the coefficients...

Open Mathematics > 2012 > 10 > 2 > 609-618

Advances in Mathematics > 2012 > 229 > 2 > 1080-1103

Central European Journal of Mathematics > 2012 > 10 > 2 > 609-618