# Search results

Control and Cybernetics > 2019 > Vol. 48, No. 1 > 31--68

Journal of Elliptic and Parabolic Equations > 2018 > 4 > 2 > 417-440

Mediterranean Journal of Mathematics > 2018 > 15 > 4 > 1-14

*p*(

*x*)-Laplacian Robin eigenvalue problem $$\begin{aligned} \left\{ \begin{array}{ll} - \Delta _{p(x)}u = \lambda V(x) |u|^{q(x)-2}u, \quad x\in \Omega ,\\ |\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu }+\beta (x)|u|^{p(x)-2}u=0,\quad x\in \partial \Omega , \end{array}\right. \end{aligned}$$ -Δp(x)u=λV(x)|u|q(x)-2u,x∈Ω,|∇u|p(x)-2∂u∂ν+β(x)|u|p(x)-2u=0,x∈∂Ω, where $$\Omega $$ Ω is...

Journal of Mathematical Analysis and Applications > 2018 > 457 > 1 > 944-977

Journal of Mathematical Analysis and Applications > 2017 > 454 > 1 > 412-428

Nonlinear Analysis: Real World Applications > 2017 > 34 > C > 536-562

Journal of Computational and Applied Mathematics > 2017 > 309 > C > 122-131

Journal of Mathematical Analysis and Applications > 2016 > 443 > 1 > 265-294

Journal de Math�matiques Pures et Appliqu�es > 2016 > 106 > 3 > 512-545

Afrika Matematika > 2017 > 28 > 1-2 > 237-247

Science China Mathematics > 2017 > 60 > 1 > 133-146

*p*(

*x*)-Laplace equations with Leray-Lions type operators using direct methods and critical point theories in Calculus of Variations and prove the uniqueness and nonnegativeness of solutions when the principal operator is monotone and the nonlinearity is nonincreasing. Our operator is of the most general form containing all previous ones...

Journal of Mathematical Analysis and Applications > 2016 > 436 > 2 > 782-795

Nonlinear Analysis: Theory, Methods & Applications > 2016 > 132 > C > 95-114

Nonlinear Analysis: Real World Applications > 2016 > 27 > C > 312-325

Nonlinear Analysis: Theory, Methods & Applications > 2015 > 128 > C > 423-426

Computers and Mathematics with Applications > 2015 > 69 > 7 > 582-591

Opuscula Mathematica > 2015 > Vol. 35, no. 6 > 853--866

Journal of Mathematical Analysis and Applications > 2014 > 418 > 2 > 812-827

Journal of Differential Equations > 2014 > 257 > 5 > 1529-1566