# Search results

Journal of Applied Logic > 2015 > 13 > 3 > 188-196

Expert Systems With Applications > 2014 > 41 > 14 > 6291-6304

Theoretical Computer Science > 2014 > 549 > Complete > 36-60

Semina Scientiarum > 2012 > 11

Edukacja Filozoficzna > 2022 > 74 > 161-182

Roczniki Filozoficzne > 2020 > 68 > 4 > 291-313

Bulletin of the Section of Logic > 2021 > 50 > 4 > 455-463

Reports on Mathematical Logic > 2021 > Vol. 56 > 57--74

Cognitive Science > 44 > 12 > n/a - n/a

*mental model theory*(MMT) can accommodate a form of inference ($I$, let us label it) they find in a high percentage of their subjects. We reveal their mischaracterization and, in so doing, lay a landscape for future modeling by cognitive scientists who may wonder whether human reasoning is consistent with, or perhaps...

Bulletin of the Section of Logic > 2020 > 49 > 3 > 255-268

Organon F. medzinárodný časopis pre analytickú filozofiu > 2020 > 27 > 2 > 187 – 262

Filozofia Nauki > 2020 > 28 > 1(109) > 125-132

Edukacja Filozoficzna > 2020 > 70 > 23-38

Foundations of Science > 2019 > 24 > 4 > 727-749

*Argumentum ornithologicum*” and Anselm’s argument “

*Argumentum ontologicum*”. We suggest Borges, using the image of a flock of birds, with oriental reminiscences, half joking, half serious attempts to prove the existence of God. We demonstrate the fallacies incurred by Borges and why his “

*Argumentum*” has no place within...

Fundamenta Informaticae > 2019 > Vol. 165, nr 3-4 > 193--203

Fundamenta Informaticae > 2019 > Vol. 164, nr 4 > 299--325

^{0}

_{2}–complete. Thus, it admits a kind of a truth definition. We define such an arithmetical predicate. Then, we define its modal logic SL and prove a completeness theorem with respect to finite models semantics. The proof that SL is the modal logic of the approximate truth definition for finite...

Journal of Philosophical Logic > 2019 > 48 > 6 > 1003-1016

*φ*→

*ψ*, let (X ♦ ) be φ → ♦ ψ . (X ♦ ) can be thought of as the modally qualified...

Filozofia Nauki > 2019 > 27 > 1(105) > 27-48