# Search results

Mathematical Methods in the Applied Sciences > 47 > 6 > 5090 - 5097

Mathematica Applicanda > 2023 > Vol. 51, no. 1 > 33--50

Mathematical Methods in the Applied Sciences > 46 > 9 > 11229 - 11245

Mathematical Methods in the Applied Sciences > 46 > 9 > 10384 - 10399

Mathematical Methods in the Applied Sciences > 46 > 8 > 8945 - 8955

Mathematical Methods in the Applied Sciences > 46 > 6 > 6910 - 6929

Numerical Methods for Partial Differential Equations > 39 > 2 > 995 - 1007

Mathematical Methods in the Applied Sciences > 46 > 1 > 232 - 247

Journal of Applied Analysis > 2023 > Vol. 29, nr 1 > 99--103

Optimal Control Applications and Methods > 43 > 4 > 996 - 1019

Mathematical Methods in the Applied Sciences > 45 > 5 > 2530 - 2541

Opuscula Mathematica > 2022 > Vol. 42, no. 6 > 793--803

International Journal of Robust and Nonlinear Control > 32 > 2 > 567 - 582

Mathematical Methods in the Applied Sciences > 44 > 13 > 10905 - 10911

*α*‐resolvent in order to elucidate the investigated result. Our results modify the Theorem 4 of Sousa and et. al. [Sousa JVC, Rodrigues FG, Oliveira EC. Stability of the fractional...

Mathematical Methods in the Applied Sciences > 44 > 11 > 9524 - 9540

*ϑ*‐fractional derivative in the Riemann–Liouville sense. The existence and uniqueness of positive solutions to the problem at hand are proved. Our discussion relies on the properties of Green's function, the upper and lower solutions method, and the classical fixed point theorems in a cone...

Mathematical Methods in the Applied Sciences > 44 > 10 > 8215 - 8227

Mathematical Methods in the Applied Sciences > 44 > 8 > 7238 - 7249

Mathematical Methods in the Applied Sciences > 44 > 8 > 6581 - 6600