# Search results

Siberian Mathematical Journal > 2019 > 60 > 5 > 896-901

Computational Methods and Function Theory > 2019 > 19 > 4 > 671-685

*f*be analytic in the unit disk $${\mathbb {D}}=\{z\in {\mathbb {C}}:|z|<1 \}$$ D = { z ∈ C : | z | < 1 } , and $${\mathcal {S}}$$ S be the subclass of normalized univalent functions given by $$f(z)=z+\sum _{n=2}^{\infty }a_n z^n$$ f ( z ) = z + ∑ n = 2 ∞ a n z n for $$z\in {\mathbb {D}}$$ z ∈ D . We give bounds for $$| |a_3|-|a_2| | $$ | | a 3...

Mathematical Notes > 2019 > 105 > 3-4 > 342-350

Journal of Inequalities and Applications > 2019 > 2019 > 1 > 1-14

Monatshefte für Mathematik > 2019 > 190 > 3 > 425-439

*f*to be normal.

Results in Mathematics > 2018 > 73 > 4 > 1-20

*F*be the inverse of the function $$f\in {\mathcal {S}}$$ f∈S with the series expansion $$F(w)=f^{-1}(w)=w+ \sum _{n=2}^{\infty }A_nw^n$$ F(w)=f-1(w)=w+∑n=2∞Anwn for $$|w|<1/4$$ |w|<1/4...

Journal of Inequalities and Applications > 2018 > 2018 > 1 > 1-8

Complex Analysis and Operator Theory > 2019 > 13 > 6 > 2829-2838

Lobachevskii Journal of Mathematics > 2018 > 39 > 6 > 818-825

Analysis and Mathematical Physics > 2019 > 9 > 3 > 1383-1392

Mediterranean Journal of Mathematics > 2018 > 15 > 3 > 1-17

Applied Mathematics and Computation > 2018 > 323 > C > 86-94

Mathematical Biosciences > 2017 > 292 > C > 10-17

Journal of the Egyptian Mathematical Society > 2017 > 25 > 3 > 291-293

_{2}|, |a

_{3}| and |a

_{4}| for the functions in these subclasses.

Mediterranean Journal of Mathematics > 2017 > 14 > 4 > 1-11

*f*be analytic in $${\mathbb D}=\{z:|z|<1\}$$ D = { z : | z | < 1 } , with $$f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$$ f ( z ) = z + ∑ n = 2 ∞ a n z n and belong to the set of Bazilevič functions of logarithmic growth $${\mathcal B}_{1}(\alpha )$$ B 1 ( α ) defined for $$\alpha \ge 0$$ α ≥ 0 by $$\mathfrak {Re} \big \{ f'(z)\big...

Lobachevskii Journal of Mathematics > 2017 > 38 > 3 > 429-434

*σ*

_{mn}characterize the behavior of the coefficient body for the class

*S*of all holomorphic and univalent functions

*f*in the unit disk normalized by

*f*(

*z*) =

*z*+

*a*

_{2}

*z*

^{2}+.... The number

*σ*

_{mn}is the limit of ratio for Re(

*n*−

*a*

_{n}) and Re(

*m*−a

_{m}) as

*f*tends to the Koebe function

*K*(

*z*) =

*z*(1 −

*z*)

^{−2}. In particular,

*σ*

_{23}=0. We define analogous numbers

*σ*

_{mn}(

*M*) for the class

*S*(

*M*) ⊂

*S*of bounded functions...

Russian Mathematics > 2017 > 61 > 7 > 64-72

Journal of Mathematical Analysis and Applications > 2017 > 449 > 1 > 793-807

Constructive Approximation > 2017 > 46 > 3 > 435-458