# Search results

Acta Mathematica Hungarica > 2019 > 159 > 1 > 265-286

Journal of Symbolic Computation > 2018 > 85 > C > 148-169

Formalized Mathematics > 2017 > 25 > 1 > 39-48

Journal of Number Theory > 2016 > 164 > C > 269-281

Theoretical Computer Science > 2016 > 611 > Complete > 116-135

Monatshefte für Mathematik > 2017 > 182 > 1 > 33-38

Lithuanian Mathematical Journal > 2015 > 55 > 2 > 193-206

Frontiers of Mathematics in China > 2014 > 9 > 2 > 425-430

*n*= 1,2, where are some rational functions of

*j*

_{1}+

*j*

_{2}+ ⋯ +

*j*

_{ m }.

Organon F. medzinárodný časopis pre analytickú filozofiu > 2010 > 17 > 1 > 53-69

Science China Mathematics > 2009 > 52 > 1 > 66-76

_{ p,G }, where

*p*is a prime and

*G*⊂ ℝ is an additive subgroup containing 1. We conclude that ℂ

_{ p,G }is a field and ℂ

_{ p,G }is algebraically closed. Based on this the author obtains the complete classification of valuations on arithmetic surfaces. Furthermore, for any

*m*⩽

_{ p,G }

*n*∈ ℤ, let

*V*

_{ m,n }be...

Acta Mathematica Sinica, English Series > 2007 > 23 > 10 > 1897-1902

*ω*

_{1}, . . . ,

*ω*

_{ s }be a set of real transcendental numbers satisfying a certain Diophantine inequality. The upper bound for the discrepancy of the Kronecker sequence ({

*nω*

_{1}}, . . . , {

*nω*

_{ s }})(1 ≤

*n*≤

*N*) is given. In particular, some low-discrepancy sequences are constructed.

Mathematical Notes > 2005 > 78 > 3-4 > 304-319

*E*-functions in the form of polynomials in hypergeometric functions. We prove several assertions (formulated earlier by A. B. Shidlovskii) about the transcendence and linear independence of values of

*E*-functions.

Lithuanian Mathematical Journal > 2001 > 41 > 4 > 330-343

Computer Physics Communications > 2000 > 126 > 1-2 > 51-56