# Search results

Opuscula Mathematica > 2024 > Vol. 44, no. 5 > 689--705

Opuscula Mathematica > 2022 > Vol. 42, no. 3 > 427--437

*N*(the truncation...

Superlattices and Microstructures > 2016 > 100 > C > 120-130

Open Mathematics > 2015 > 13 > 1

Czechoslovak Mathematical Journal > 2014 > 64 > 4 > 1067-1098

*f*∈

*L*

_{ p }(ℝ),

*p*∈ (1,∞) and $$r > 0,q \geqslant 0,\frac{1} {r} \in L_1^{loc} (\mathbb{R}),q \in L_1^{loc} (\mathbb{R})$$ , $$\mathop {\lim }\limits_{|d| \to \infty } \int_{x - d}^x {\frac{{dt}} {{r(t)}}} \cdot \int_{x - d}^x {q(t)dt = \infty } $$ . In an earlier paper, we obtained a criterion for...

Opuscula Mathematica > 2014 > Vol. 34, no. 1 > 97--113

Opuscula Mathematica > 2014 > Vol. 34, no. 4 > 837--849

Mathematical Notes > 2013 > 94 > 3-4 > 508-523

*z*∈

*γ*and

*γ*is a piecewise smooth curve which is the boundary of a convex bounded domain.

IEEE Antennas and Propagation Magazine > 2012 > 54 > 5 > 261 - 269

Czechoslovak Mathematical Journal > 2012 > 62 > 3 > 709-716

*W*

_{1}

^{(2)}(ℝ,

*q*) of Sobolev type $$W_1^{(2)} (\mathbb{R},q) = \left\{ {y \in A_{loc}^{(1)} (\mathbb{R}):\left\| {y''} \right\|_{L_1 (\mathbb{R})} + \left\| {qy} \right\|_{L_1 (\mathbb{R})} < \infty } \right\} $$ and the equation $$ - y''(x) + q(x)y(x) = f(x),x \in \mathbb{R} $$ Here

*f*ε

*L*

_{1}(ℝ) and 0 ⩾

*q*∈

*L*

_{1}

^{loc}(ℝ). We prove the following: 1) The problems...

Boundary Value Problems > 2012 > 2012 > 1 > 1-7

*q*is a measurable function which has a singularity in (

*a, b*) and which is integrable on subsets of (

*a, b*) which exclude the singularity.

**Mathematics Subject Classification 2000**...

Acta Mathematica Scientia > 2011 > 31 > 4 > 1561-1568

^{2}+ q with eigenparameter dependent boundary conditions is the same as the spectrum belonging to the zero potential, then the potential function q is actually...

Boundary Value Problems > 2011 > 2011 > 1 > 1-8

*Q*(

*x*) is an integrable

*m*×

*m*matrix-valued function defined on the interval [0,

*π*] The authors prove that

*m*

^{2}+1 characteristic functions can determine the potential function of a vectorial Sturm-Liouville operator uniquely. In particular, if

*Q*(

*x*) is real symmetric, then characteristic functions can determine the potential function...

2009 International Conference on Test and Measurement > 1 > 307 - 310