# Search results

Mathematical Methods in the Applied Sciences > 44 > 1 > 91 - 103

*open issue*: consider, for instance, the classical one‐dimensional cubic nonlinear Schrödinger equation “How can we bound the fractal dimension of the associate...

Journal of Applied Analysis > 2020 > Vol. 26, nr 2 > 257--262

Numerical Methods for Partial Differential Equations > 37 > 1 > 196 - 209

International Journal of Quantum Chemistry > 120 > 24 > n/a - n/a

Mathematical Methods in the Applied Sciences > 43 > 15 > 8527 - 8537

*V*is continuous and allowed to be sign‐changing and

*f*(

*x*,

*u*) satisfies more general sublinear growth conditions than those in previous studies. The first result of this paper obtains the existence of a nontrivial solution of (1). The second establishes an existent...

International Journal of Quantum Chemistry > 120 > 11 > n/a - n/a

*s*‐states of a class of multiparameter exponential‐type potential (E‐tP) is used to obtain the approximate ℓ ≠ 0 bound state solutions for the corresponding

*q*‐deformed radial potentials. To deal with the effective potential, the Pekeris approximation for the centrifugal term is applied. The proposal has the advantage that, depending on the...

Mathematische Nachrichten > 293 > 4 > 774 - 793

Archives of Control Sciences > 2020 > Vol. 30, No. 3 > 553--573

Journal of the Korean Physical Society > 2019 > 75 > 10 > 806-810

SN Applied Sciences > 2019 > 1 > 12 > 1-7

*l*. The received...

Journal of Scientific Computing > 2019 > 81 > 3 > 1493-1508

Lobachevskii Journal of Mathematics > 2019 > 40 > 10 > 1455-1469

*π, π*] satisfying the homogeneous Dirichlet conditions on the boundary of the segment. The potential here has the type $\xi(u)=\left(1+|u|^{2}\right)^{\frac{p}{2}} u$ ξ ( u ) = ( 1 + ∣ u ∣ 2 ) p 2 u , where

*u*is...

Journal of Mathematical Chemistry > 2019 > 57 > 10 > 2208-2228

Russian Chemical Bulletin > 2019 > 68 > 9 > 1635-1639

Mathematical Models and Computer Simulations > 2019 > 11 > 5 > 667-678

Journal of Mathematical Chemistry > 2019 > 57 > 9 > 2019-2048

Mathematical Methods in the Applied Sciences > 42 > 15 > 5106 - 5117

Journal of Molecular Modeling > 2019 > 25 > 9 > 1-11