# Search results

*m*and a subset $$H_m\times H_m$$ H m × H m of $$H_{2m}$$ H 2 m consisting of two $$m\times m$$ m × m diagonal block matrices. We consider two actions of $$Sp(m,{\mathbb R})\times Sp(m,{\mathbb R}) \subset Sp(2m,{\mathbb R})$$ S p ( m , R ) × S p ( m , R ) ⊂ S p ( 2 m , R ) , one is the...

Research in the Mathematical Sciences > 2019 > 6 > 1 > 1-15

*m*and matrix index

*T*in case

*T*is a kernel form.

Journal of Number Theory > 2018 > 193 > C > 128-153

Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg > 2018 > 88 > 2 > 297-316

The Ramanujan Journal > 2018 > 47 > 3 > 605-650

Research in the Mathematical Sciences > 2018 > 5 > 1 > 1-16

Journal of Number Theory > 2018 > 182 > C > 57-82

Research in Number Theory > 2017 > 3 > 1 > 1-16

European Journal of Mathematics > 2018 > 4 > 2 > 561-584

Journal of Number Theory > 2017 > 179 > C > 113-125

Advances in Mathematics > 2016 > 302 > C > 551-627

Selecta Mathematica > 2017 > 23 > 2 > 1249-1278

*W*-algebras and compute asymptotics of irreducible characters which allows us to determine quantum dimensions of the corresponding...

Archiv der Mathematik > 2016 > 107 > 4 > 367-378

Journal of Number Theory > 2016 > 163 > C > 267-295

Research in the Mathematical Sciences > 2016 > 3 > 1 > 1-14

*f*called shifted symmetric polynomials. They showed that certain

*q*-series arising from these functions (the so-called

*q*-brackets $$\left<f\right>_q$$ f q ) are quasimodular forms. We revisit a family of such functions, denoted $$Q_k$$ Q k , and study the

*p*-adic properties of their

*q*-brackets. To do this, we define regularized...

Research in Number Theory > 2016 > 2 > 1 > 1-18

*k*(with

*k*>2 if

*ϕ*is not a cusp form) and index

*m*with integral algebraic coefficients which is an eigenfunction of all Hecke operators

*T*

_{ p },(

*p*,

*m*)=1, and which has at least one nonvanishing coefficient

*c*(

*n*...

The Ramanujan Journal > 2016 > 39 > 2 > 347-362

The Ramanujan Journal > 2016 > 39 > 3 > 533-544

Letters in Mathematical Physics > 2016 > 106 > 10 > 1379-1395