# Search results

IEEE Power and Energy Magazine > 2013 > 11 > 6 > 20 - 32

Proceedings of the IEEE > 2013 > 101 > 4 > 866 - 875

IEEE Electrification Magazine > 2013 > 1 > 2 > 30 - 37

Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg > 2019 > 89 > 2 > 209-223

Journal of Electrical Engineering & Technology > 2019 > 14 > 4 > 1647-1654

Protection and Control of Modern Power Systems > 2019 > 4 > 1 > 1-11

Advanced Materials > 31 > 7 > n/a - n/a

Geometriae Dedicata > 2019 > 202 > 1 > 203-211

*n*-dimensional Bieberbach group is the fundamental group of a closed flat

*n*-dimensional manifold. K. Dekimpe and P. Penninckx conjectured that an

*n*-dimensional Bieberbach group can be generated by

*n*elements. In this paper, we show that the conjecture is true if the holonomy group is 2-generated (e.g. dihedral group, quaternion group or simple group) or the order of holonomy group is not divisible...

Archive for Mathematical Logic > 2019 > 58 > 1-2 > 137-153

*I*. Our main theorem is that we can also generalize Shelah’s trichotomy theorem...

IEEE Transactions on Applied Superconductivity > 2018 > 28 > 3 > 1 - 5

IEEE Transactions on Electromagnetic Compatibility > 2018 > 60 > 2 > 310 - 321

IEEE Transactions on Industrial Electronics > 2018 > 65 > 2 > 1097 - 1106

IEEE Transactions on Industrial Electronics > 2018 > 65 > 2 > 1316 - 1324

IEEE Transactions on Industrial Electronics > 2018 > 65 > 2 > 1695 - 1699

IEEE Transactions on Industrial Electronics > 2018 > 65 > 2 > 1846 - 1854

IEEE Transactions on Industrial Electronics > 2018 > 65 > 2 > 1781 - 1790

IEEE Transactions on Industrial Electronics > 2018 > 65 > 2 > 968 - 976

IEEE Transactions on Industrial Electronics > 2018 > 65 > 2 > 1828 - 1836

IEEE Transactions on Electromagnetic Compatibility > 2018 > 60 > 1 > 96 - 106

IEEE Transactions on Power Electronics > 2018 > 33 > 2 > 1294 - 1302