# Search results

Journal of Differential Equations > 2016 > 260 > 5 > 4619-4656

Formal Aspects of Computing > 2013 > 25 > 6 > 933-945

*a priori*determination of loop-invariants, a prerequisite for developing loops, was a task too complex for any but the simplest of operations. Around 2000, these techniques were...

Zagadnienia Filozoficzne w Nauce > 2011 > 49 > 81-97

Zagadnienia Filozoficzne w Nauce > 2011 > 49 > 63-80

Zagadnienia Filozoficzne w Nauce > 2011 > 49 > 81-97

Zagadnienia Filozoficzne w Nauce > 2011 > 49 > 63-80

*PAR*) method is a simple and useful formal method used to design and prove algorithmic programs. In this paper, we address that

*PAR*method is really an effective formal method on solving Combinatorics problems. We formally derive Combinatorics problems by

*PAR*method, which cannot only simplify the process of algorithmic program's designing and correctness testifying, but also effectively...

Journal of Parallel and Distributed Computing > 2007 > 67 > 8 > 935-946

2005 IEEE 36th Power Electronics Specialists Conference > 2422 - 2428

The Ramanujan Journal > 2004 > 8 > 4 > 423-457

*x*+

*y*)

^{ n }−

*x*

^{ n }−

*y*

^{ n }. We determine the polynomials

*A*(

*n*,

*a*,

*b*) and

*B*(

*n*,

*a*,

*b*) such that the polynomial $$ A(n, a, b)(x + y)^n + B(n, a, b)(x^n + y^n) $$ can be expanded, for any natural number

*n*, in terms of the polynomials

*x*+

*y*and

*ax*

^{2}+

*bxy*+

*ay*

^{2}. We show that the coefficients of...

Journal of Mathematical Analysis and Applications > 2003 > 284 > 1 > 266-282