The Infona portal uses cookies, i.e. strings of text saved by a browser on the user's device. The portal can access those files and use them to remember the user's data, such as their chosen settings (screen view, interface language, etc.), or their login data. By using the Infona portal the user accepts automatic saving and using this information for portal operation purposes. More information on the subject can be found in the Privacy Policy and Terms of Service. By closing this window the user confirms that they have read the information on cookie usage, and they accept the privacy policy and the way cookies are used by the portal. You can change the cookie settings in your browser.
Husserl's two notions of "definiteness" enabled him to clarify the problem of imaginary numbers. The exact meaning of these notions is a topic of much controversy. A "definite" axiom system has been interpreted as a syntactically complete theory, and also as a categorical one. I discuss whether and how far these readings manage to capture Husserl's goal of elucidating the problem...
In his 1887's Mitteilungen zur Lehre von Transfiniten, Cantor seeks to prove inconsistency of infinitesimals. We provide a detailed analysis of his argument from both historical and mathematical perspective. We show that while his historical analysis are questionable, the mathematical part of the argument is false.
Three variants of Kurt Gödel's ontological argument, proposed by Dana Scott, C. Anthony Anderson and Melvin Fitting, are encoded and rigorously assessed on the computer. In contrast to Scott's version of Gödel's argument the two variants contributed by Anderson and Fitting avoid modal collapse. Although they appear quite different on a cursory reading they are in fact closely related. This has been...
Teoria pola po raz pierwszy została opisana w pracy Chou, Gao, Zhang w 1994 roku. W kolejnej pracy (Janicic, Narboux, Quaresma 2012) zaprezentowano nowy system aksjomatów teorii pola i program przeznaczony do automatycznego dowodzenia twierdzen. W artykule chcemy przedstawić interpretację teorii pola w geometrii analitycznej na płaszczyznie kartezjanskiej R×R z porządkiem leksykograficznym. Również...
In 2015, tense n × m-valued Lukasiewicz–Moisil algebras (or tense LMn×m-algebras) were introduced by A. V. Figallo and G. Pelaitay as an generalization of tense n-valued Łukasiewicz–Moisil algebras. In this paper we continue the study of tense LMn×m-algebras. More precisely, we determine a Priestley-style duality for these algebras. This duality enables us not only to describe the tense LMn×m-congruences...
The dynamic epistemic logic for actual knowledge models the phenomenon of actual knowledge change when new information is received. In contrast to the systems of dynamic epistemic logic which have been discussed in the past literature, our system is not burdened with the problem of logical omniscience, that is, an idealized assumption that the agent explicitly knows all classical tautologies and all...
Based on the hesitant fuzzy set theory which is introduced by Torra in the paper [12], the notions of Inf-hesitant fuzzy subalgebras, Inf-hesitant fuzzy ideals and Inf-hesitant fuzzy p-ideals in BCK/BCI-algebras are introduced, and their relations and properties are investigated. Characterizations of an Inf-hesitant fuzzy subalgebras, an Inf-hesitant fuzzy ideals and an Inf-hesitant fuzzy p-ideal...
This paper deals with pretabularity of fuzzy logics. For this, we first introduce two systems NMnfp and NM½, which are expansions of the fuzzy system NM (Nilpotent minimum logic), and examine the relationships between NMnfp and the another known extended system NM-. Next, we show that NMnfp and NM½ are pretabular, whereas NM is not. We also discuss their algebraic completeness.
Algorithms and algorithmic thinking are key topics in STEM Education. By using algorithms approximate solutions can be obtained for analytical unsolvable problems. Before new methods can be safely applied they have to be thoroughly tested in experiments. In this article we present a series of exercise where students can experiment with algorithms and test them using GeoGebra or the TI-Nspire. Based...
The results of Zarzycki for the cardinality of the sets of all bijections, surjections, and injections are generalized to the case when the domains and codomains are infinite and different. The elementary proofs the cardinality of the sets of bijections and surjections are given within the framework of the Zermelo-Fraenkel set theory with the axiom of choice. The case of the set of all injections...
We discuss the role of a heuristic principle known as the Principle of Permanence of Forms in the development of mathematics, especially in abstract algebra. We try to find some analogies in the development of modern formal logic. Finally, we add a few remarks on the use of the principle in question in mathematical education.
In this paper we explore different ways of solving quadratic equations. Our main goal is to review traditional textbooks methods and offer an alternative, often side-stepped method based on the area model. We conclude that whereas traditional methods offer effective algorithms that quickly lead to the desired results, alternative methods may enhance meaningful and joyful learning.
In this paper we present three aspects of the autonomy of geometry. (1) An argument for the geometric as opposed to the ‘geometric algebraic’ interpretation of Euclid’s Books I and II; (2) Hilbert’s successful project to axiomatize Euclid’s geometry in a first order geometric language, notably eliminating the dependence on the Archimedean axiom; (3) the independent conception of multiplication from...
The paper presents, among others, the golden number as the limit of the quotient of neighboring terms of the Fibonacci and Fibonacci type sequence by means of a fixed point of a mapping of a certain interval with the help of Edelstein's theorem. To demonstrate the equality , where is $n$-th Fibonacci number also the formula from Corollary \ref{cor1} has been applied. It was obtained using...
In this study, it was aimed to investigate the beliefs of mathematics teachers about mathematics instruction and their teaching self-efficacy within the scope of flow theory. Participants consists of a total of 228 mathematics teachers engaged in teaching at secondary and high school levels in Turkey; they were determined using the combinations of convenience and purposive sampling. Data from the...
In this article, I analyze the theoretical foundations of the division with remainder in the arithmetic of natural numbers. As a result of this analysis I justify that the notation a:b=c r s, where a, b, c, s are natural numbers and r denotes, is correct at school mathematics level and does not lead to a contrediction suggested by the author of the article (Semadeni, 1978). As a generalization of...
Set the date range to filter the displayed results. You can set a starting date, ending date or both. You can enter the dates manually or choose them from the calendar.