# Boundary Value Problems

Boundary Value Problems > 2019 > 2019 > 1 > 1-17

*p*-biharmonic equations: Δp2u+M(∫RNΦ0(x,∇u)dx)div(φ(x,∇u))+V(x)|u|p−2u=λf(x,u)in RN, $$ \Delta _{p}^{2} u+M \biggl( \int _{\mathbb{R}^{N}}\varPhi _{0}(x,\nabla u) \,dx \biggr) \operatorname{div}\bigl(\varphi (x,\nabla u)\bigr)+V(x) \vert u \vert ^{p-2}u=\lambda f(x,u) \quad \text{in } \mathbb{R}^{N}, $$ where 2<2p<N $2< 2p<N$, Δp2u=Δ(|Δu|p−2Δu) $\Delta...

Boundary Value Problems > 2019 > 2019 > 1 > 1-15

Boundary Value Problems > 2019 > 2019 > 1 > 1-16

*p*-Laplacian systems with two singular and subcritical nonlinearities. We obtain one theorem which shows that there exists at least one nontrivial weak solution for these problems under some conditions. We obtain this result by variational method and critical point theory.

Boundary Value Problems > 2019 > 2019 > 1 > 1-21

Boundary Value Problems > 2019 > 2019 > 1 > 1-17

Boundary Value Problems > 2019 > 2019 > 1 > 1-21