# Boundary Value Problems

Boundary Value Problems > 2019 > 2019 > 1 > 1-14

*u*controls the breakdown of the strong solution. Furthermore, we give the probability estimate of the lifespan larger than

*δ*( 0<δ<1...

Boundary Value Problems > 2019 > 2019 > 1 > 1-14

Boundary Value Problems > 2019 > 2019 > 1 > 1-25

*A*,

*B*are two mixed monotone operators and e∈P with θ≤e≤h $\theta \leq e\leq h$, we prove a class of boundary value problems on elastic beam equation to have a unique solution. Furthermore, we also apply our abstract result to establish the existence...

Boundary Value Problems > 2019 > 2019 > 1 > 1-18

Boundary Value Problems > 2019 > 2019 > 1 > 1-19

Boundary Value Problems > 2019 > 2019 > 1 > 1-16

*x*. By using the non-Nehari...

Boundary Value Problems > 2019 > 2019 > 1 > 1-9

Boundary Value Problems > 2019 > 2019 > 1 > 1-15

*s*. V(x) $V(x)$, K(x) $K(x)$ are nonnegative continuous functions and f(x) $f(x)$...

Boundary Value Problems > 2019 > 2019 > 1 > 1-1

Boundary Value Problems > 2019 > 2019 > 1 > 1-18

Boundary Value Problems > 2019 > 2019 > 1 > 1-11

*p*in (2,2∗) $(2,2^{*})$ for all...

Boundary Value Problems > 2019 > 2019 > 1 > 1-14

*a*is an arbitrary constant.

Boundary Value Problems > 2019 > 2019 > 1 > 1-11

Boundary Value Problems > 2019 > 2019 > 1 > 1-12

*∂U*with 1<q<2<p<2∗ $1< q<2<p<2_{*}$. In the function space H(U) $\mathscr{H}...

Boundary Value Problems > 2019 > 2019 > 1 > 1-13

Boundary Value Problems > 2019 > 2019 > 1 > 1-11

*g*.

Boundary Value Problems > 2019 > 2019 > 1 > 1-11

Boundary Value Problems > 2019 > 2019 > 1 > 1-27

*p*-Laplacian problems: Δpu=b(x)f(u),u>0,x∈Ω,u|∂Ω=∞ $\Delta _{p} u=b(x)f(u), u>0, x\in \varOmega, u|_{\partial \varOmega }=\infty $, where

*Ω*is a bounded domain with smooth boundary in RN(N≥2) $\mathbb{R}^{N} (N\geq 2)$,...

Boundary Value Problems > 2019 > 2019 > 1 > 1-12

Boundary Value Problems > 2019 > 2019 > 1 > 1-16