The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.

# Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg

### Description

### Identifiers

ISSN | 0025-5858 |

e-ISSN | 1865-8784 |

DOI | 10.1007/12188.1865-8784 |

### Publisher

Springer Berlin Heidelberg

### Additional information

Data set: Springer

### Articles

Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg > 2018 > 88 > 2 > 377-387

Generalized Burniat surfaces are surfaces of general type with $$p_g=q$$ pg=q and Euler number $$e=6$$ e=6 obtained by a variant of Inoue’s construction method for the classical Burniat surfaces. I prove a variant of the Bloch conjecture for these surfaces. The method applies also to the so-called Sicilian surfaces introduced by Bauer et al. in (J Math Sci Univ Tokyo 22(2–15):55–111, 2015. arXiv:1409...

Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg > 2018 > 88 > 2 > 371-376

We prove a non-vanishing result in weight aspect for the product of two Fourier coefficients of a Hecke eigenform of half-integral weight.

Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg > 2018 > 88 > 2 > 289-295

In this note, we prove a duality theorem for the Tate–Shafarevich group of a finite discrete Galois module over the function field

*K*of a curve over an algebraically closed field: there is a perfect duality of finite groups for*F*a finite étale Galois module on*K*of order invertible in*K*and with $$F' = {{\mathrm{Hom}}}(F,\mathbf{Q}/\mathbf {Z}(1))$$ F′=Hom(F,Q/Z(1)) . Furthermore, we prove that...