# Journal of Combinatorial Optimization

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 152-181

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 218-222

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 136-151

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 79-94

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 67-77

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 311-326

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 333-346

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 260-278

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 29-43

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 382-395

*cyclic edge-cut*of a connected graph $$G$$ G is an edge set, the removal of which separates two cycles. If $$G$$ G has a cyclic edge-cut, then it is called

*cyclically separable*. For a cyclically separable graph $$G$$ G , the

*cyclic edge connectivity*of a graph $$G$$ G , denoted by $$\lambda _c(G)$$ λ c ( G ) , is the minimum cardinality over all cyclic...

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 44-51

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 1-12

*dominating set*is a set $$D\subseteq V$$ D ⊆ V such that every vertex $$v\in V\setminus D$$ v ∈ V \ D has a neighbor in $$D$$ D . The minimum outer-connected dominating set (Min-Outer-Connected-Dom-Set) problem for a graph $$G$$ G is to find a dominating set $$D$$ D of $$G$$ G such that ...

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 239-259

*power*of a vertex $$u$$ u in a directed spanning subgraph $$H$$ H is given by $$p_H(u) = \max _{uv \in E(H)} c(uv)$$ p H ( u ) = max u v ∈ E ( H ) c ( u v ) , and corresponds to the energy consumption required for wireless...

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 223-238

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 327-332

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 405-426

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 279-310

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 427-446

*degree distance*of a connected graph $$G$$ G , defined as $$D^{'} (G)=\sum _{u\in V(G)} d_{G} (u)D_{G} (u)$$ D ′ ( G ) = ∑ u ∈ V ( G ) d G ( u ) D G ( u ) , where $$D_{G} (u)$$ D G ( u ) is the sum of distances between the vertex $$u$$ u and all other vertices in $$G$$ G and $$d_{G} (u)$$ d G...

Journal of Combinatorial Optimization > 2016 > 31 > 1 > 196-217