-
[1] W. J. Blok, D. Pigozzi, Algebraizable logics, vol. 77, American Mathematical Society (1989), DOI: http://dx.doi.org/10.1090/memo/0396
-
[2] W. J. Blok, D. Pigozzi, Abstract algebraic logic and the deduction theorem (2001), URL: https://orion.math.iastate.edu/dpigozzi/papers/aaldedth.pdf
-
[3] R. Borzooei, F. Zebardast, M. Aaly Kologani, Some types of filters in equality algebras, Categories and General Algebraic Structures with Applications, vol. 7 (Special Issue on the Occasion of Banaschewski's 90th Birthday (II)) (2017), pp. 33–55, DOI: http://dx.doi.org/10.1007/s00500-005-0534-4
-
[4] R. A. Borzooei, M. Zarean, O. Zahiri, Involutive equality algebras, Soft Computing, vol. 22(22) (2018), pp. 7505–7517, DOI: http://dx.doi.org/10.1007/s00500-018-3032-1
-
[5] J. R. Büchi, T. M. Owens, Skolem rings and their varieties, [in:] The Collected Works of J. Richard Büchi, Springer (1990), pp. 161–221, DOI: http://dx.doi.org/10.1007/978-1-4613-8928-6-11
-
[6] L. C. Ciungu, Internal states on equality algebras, Soft computing, vol. 19(4) (2015), pp. 939–953, DOI: http://dx.doi.org/10.1007/s00500-014-1494-3
-
[7] J. Czelakowski, Protoalgebraic logics, [in:] Protoalgebraic Logics, Springer (2001), pp. 69–122, DOI: http://dx.doi.org/10.1007/978-94-017-2807-2-3
-
[8] M. Dyba, M. El-Zekey, V. Novák, Non-commutative first-order EQ-logics, Fuzzy Sets and Systems, vol. 292 (2016), pp. 215–241, DOI: http://dx.doi.org/10.1016/j.fss.2014.11.019
-
[9] M. Dyba, V. Novák, EQ-logics: Non-commutative fuzzy logics based on fuzzy equality, Fuzzy Sets and Systems, vol. 172(1) (2011), pp. 13–32, DOI: http://dx.doi.org/10.1016/j.fss.2010.11.011
-
[10] M. El-Zekey, Representable good EQ-algebras, Soft Computing, vol. 14(9) (2010), pp. 1011–1023, DOI: http://dx.doi.org/10.1007/s00500-009-0491-4