In [12] Petrunin proves that a compact metric space X admits an intrinsic isometry into En if and only if X is a pro-Euclidean space of rank at most n, meaning that X can be written as a “nice” inverse limit of polyhedra. He also shows that either case implies that X has covering dimension at most n. The purpose of this paper is to extend these results to include both embeddings and spaces which are...

A theorem of Lusin states that every Borel function onRis equal almost everywhere to the derivative of a continuous function. This result was later generalized to Rn in works of Alberti and Moonens-Pfeffer. In this note, we prove direct analogs of these results on a large class of metric measure spaces, those with doubling measures and Poincaré inequalities, which admit a form of differentiation by...

We provide a new and elementary proof for the structure of geodesics in the Heisenberg group Hn. The proof is based on a new isoperimetric inequality for closed curves in R2n.We also prove that the Carnot- Carathéodory metric is real analytic away from the center of the group.

It is shown that every bi-Lipschitz bijection from Z to itself is at a bounded L1 distance from either the identity or the reflection.We then comment on the group-theoretic properties of the action of bi-Lipschitz bijections.

We prove Obata’s rigidity theorem for metric measure spaces that satisfy a Riemannian curvaturedimension condition. Additionally,we show that a lower bound K for the generalizedHessian of a sufficiently regular function u holds if and only if u is K-convex. A corollary is also a rigidity result for higher order eigenvalues.

We give conditions on Gromov-Hausdorff convergent inverse systems of metric measure graphs which imply that the measured Gromov-Hausdorff limit (equivalently, the inverse limit) is a PI space i.e., it satisfies a doubling condition and a Poincaré inequality in the sense of Heinonen-Koskela [12]. The Poincaré inequality is actually of type (1, 1). We also give a systematic construction of examples...

We find necessary and sufficient conditions for a Lipschitz map f : E ⊂ ℝk → X into a metric space to satisfy ℋk(f(E)) = 0. An interesting feature of our approach is that despite the fact that we are dealing with arbitrary metric spaces, we employ a variant of the classical implicit function theorem. Applications include pure unrectifiability of the Heisenberg groups.

Using an inverse system of metric graphs as in [3], we provide a simple example of a metric space X that admits Poincaré inequalities for a continuum of mutually singular measures.

We give a necessary and sufficient condition for a map deffned on a simply-connected quasi-convex metric space to factor through a tree. In case the target is the Euclidean plane and the map is Hölder continuous with exponent bigger than 1/2, such maps can be characterized by the vanishing of some integrals over winding number functions. This in particular shows that if the target is the Heisenberg...

We prove the unique existence of the (non-linear) resolvent associated to a coercive proper lower semicontinuous function satisfying a weak notion of p-uniform λ-convexity on a complete metric space, and establish the existence of the minimizer of such functions as the large time limit of the resolvents, which generalizing pioneering work by Jost for convex functionals on complete CAT(0)-spaces. The...

In this paper we define jump set and approximate limits for BV functions on Wiener spaces and show that the weak gradient admits a decomposition similar to the finite dimensional case. We also define the SBV class of functions of special bounded variation and give a characterisation of SBV via a chain rule and a closure theorem. We also provide a characterisation of BV functions in terms of the short-time...

In this note we prove that on metric measure spaces, functions of least gradient, as well as local minimizers of the area functional (after modification on a set of measure zero) are continuous everywhere outside their jump sets. As a tool, we develop some stability properties of sequences of least gradient functions. We also apply these tools to prove a maximum principle for functions of least gradient...

We consider the space Cn of convex functions u defined in Rn with values in R ∪ {∞}, which are lower semi-continuous and such that lim|x| } ∞ u(x) = ∞. We study the valuations defined on Cn which are invariant under the composition with rigid motions, monotone and verify a certain type of continuity. We prove integral representations formulas for such valuations which are, in addition, simple or homogeneous.

We provide a machinery for transferring some properties of metrizable ANR-spaces to metrizable LCn-spaces. As a result, we show that for completely metrizable spaces the properties ALCn, LCn and WLCn coincide to each other. We also provide the following spectral characterizations of ALCn and celllike compacta: A compactum X is ALCn if and only if X is the limit space of a σ-complete inverse system...

Let p be a real number greater than one and let X be a locally compact, noncompact metric measure space that satisfies certain conditions. The p-Royden and p-harmonic boundaries of X are constructed by using the p-Royden algebra of functions on X and a Dirichlet type problem is solved for the p-Royden boundary. We also characterize the metric measure spaces whose p-harmonic boundary is empty.

In a recent work, E. Cinti and F. Otto established some new interpolation inequalities in the study of pattern formation, bounding the Lr(μ)-norm of a probability density with respect to the reference measure μ by its Sobolev norm and the Kantorovich-Wasserstein distance to μ. This article emphasizes this family of interpolation inequalities, called Sobolev-Kantorovich inequalities, which may be established...

We characterize the boundary at infinity of a complex hyperbolic space as a compact Ptolemy space that satisfies four incidence axioms.

We investigate how to glue hyperconvex (or injective) metric spaces such that the resulting space remains hyperconvex. We give two new criteria, saying that on the one hand gluing along strongly convex subsets and on the other hand gluing along externally hyperconvex subsets leads to hyperconvex spaces. Furthermore, we show by an example that these two cases where gluing works are opposed and cannot...

Let f : G → H be a Lipschitz map between two Carnot groups. We show that if B is a ball of G, then there exists a subset Z ⊂ B, whose image in H under f has small Hausdorff content, such that B\Z can be decomposed into a controlled number of pieces, the restriction of f on each of which is quantitatively biLipschitz. This extends a result of [14], which proved the same result, but with the restriction...

We introduce the notions of almost Lipschitz embeddability and nearly isometric embeddability. We prove that for p ∈ [1,∞], every proper subset of Lp is almost Lipschitzly embeddable into a Banach space X if and only if X contains uniformly the ℓpn’s. We also sharpen a result of N. Kalton by showing that every stable metric space is nearly isometrically embeddable in the class of reflexive Banach...