# IEEE Transactions on Electron Devices

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 319 - 324

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 224 - 230

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 137 - 144

_{0.7}Ca

_{0.3}MnO

_{3}(PCMO) RRAM, self-heating during set/reset has not been explored. Recently, we have shown self-heating to explain nonlinearity in dc IV characteristics. In this paper, we present the observation of self-heating using transient current during pulses. We show that...

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 78 - 83

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 264 - 270

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 200 - 205

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 145 - 152

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 170 - 175

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 333 - 336

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 8 - 14

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 21 - 27

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 300 - 305

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 45 - 51

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 102 - 108

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 195 - 199

_{x}Zn

_{1-x}O/ZnO bilayer. By varying the Mg

_{x}Zn

_{1-x}O layer thickness (50–400 nm), we modulated the detection wavelength from lowpass to bandpass. For a thin (50 nm) Mg

_{x}Zn

_{1-x}O film, most short-wavelength (less than 340 nm) incident photons—more than 69%—passed through the Mg

_{x}Zn

_{1-x}O and were...

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 217 - 223

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 109 - 114

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 306 - 311

IEEE Transactions on Electron Devices > 2017 > 64 > 1 > 153 - 158