# Discrete Mathematics

Discrete Mathematics > 2000 > 210 > 1-3 > 87-116

Discrete Mathematics > 2000 > 210 > 1-3 > 3-25

Discrete Mathematics > 2000 > 210 > 1-3 > 55-70

Discrete Mathematics > 2000 > 210 > 1-3 > 151-169

_{r}extensions of Ramanujan's bilateral

_{1}ψ

_{1}sum, C

_{r}extensions of Bailey's very-well-poised...

Discrete Mathematics > 2000 > 210 > 1-3 > 27-54

_{n}

_{,}

_{k}denote the subspace arrangement formed by all linear subspaces in R

^{n}given by equations of the form

_{1}x

_{i}

_{1}=

_{2}x

_{i}

_{2}=...=

_{k}x

_{i}

_{k},where 1=<i

_{1}<...<i

_{k}=<n and (

_{1},...,

_{k}) {+1,-1}

^{k}.Some important topological properties of such a subspace arrangement...

Discrete Mathematics > 2000 > 210 > 1-3 > 171-181

^{n}

^{-}

^{1}triangulations of the Newton segment. This works over any field whose characteristic is relatively prime to the lengths of the segments in the...

Discrete Mathematics > 2000 > 210 > 1-3 > 137-149

Discrete Mathematics > 2000 > 210 > 1-3 > 71-85

Discrete Mathematics > 2000 > 210 > 1-3 > 117-136

Discrete Mathematics > 2000 > 211 > 1-3 > 255-259

Discrete Mathematics > 2000 > 211 > 1-3 > 183-195

Discrete Mathematics > 2000 > 211 > 1-3 > 269-274

Discrete Mathematics > 2000 > 211 > 1-3 > 53-74

Discrete Mathematics > 2000 > 211 > 1-3 > 111-123