# Journal of Symbolic Computation

Journal of Symbolic Computation > 1995 > 19 > 1-3 > 217-243

_{ATINF}, is a key component of the inference laboratory ATINF (ATelier d'INFérence) developed at LIFIA-IMAG since 1985.Its abilities are independent of the...

Journal of Symbolic Computation > 1995 > 19 > 1-3 > 269-282

Journal of Symbolic Computation > 1995 > 19 > 1-3 > 245-267

Journal of Symbolic Computation > 1995 > 19 > 1-3 > 3-24

Journal of Symbolic Computation > 1995 > 19 > 1-3 > 159-173

Journal of Symbolic Computation > 1995 > 19 > 1-3 > 145-157

Journal of Symbolic Computation > 1995 > 19 > 1-3 > 201-216

Journal of Symbolic Computation > 1995 > 19 > 1-3 > 79-109

Journal of Symbolic Computation > 1995 > 19 > 1-3 > 133-143

Journal of Symbolic Computation > 1995 > 19 > 1-3 > 39-63

Journal of Symbolic Computation > 1995 > 19 > 1-3 > 175-199

Journal of Symbolic Computation > 1995 > 19 > 1-3 > 65-77

Journal of Symbolic Computation > 1995 > 19 > 1-3 > 25-38

Journal of Symbolic Computation > 1995 > 19 > 1-3 > 111-132

Journal of Symbolic Computation > 1995 > 19 > 4 > 293-304

Journal of Symbolic Computation > 1995 > 19 > 4 > 321-351

Journal of Symbolic Computation > 1995 > 19 > 4 > 305-319

^{n}) over GF (q) can be done by probabilistic methods as well as deterministic ones. In the following paper we consider only deterministic constructions. As far as we know, the best complexity for probabilistic algorithms is O(n

^{2}log

^{4}n log

^{2}(log n) + n log n log (log n) log q ) (see von zur Gathen and Shoup, 1992). For deterministic...

Journal of Symbolic Computation > 1995 > 19 > 4 > 353-391