Interest in measuring forest biomass and carbon stock has increased as a result of the United Nations Framework Convention on Climate Change, and sustainable planning of forest resources is therefore essential. Biomass and carbon stock estimates are based on the large area estimates of growing stock volume provided by national forest inventories (NFIs). The estimates for growing stock volume based on the NFIs depend on stem volume estimates of individual trees. Data collection for formulating stem volume and biomass models is challenging, because the amount of data required is considerable, and the fact that the detailed destructive measurements required to provide these data are laborious. Due to natural diversity, sample size for developing allometric models should be rather large. Terrestrial laser scanning (TLS) has proved to be an efficient tool for collecting information on tree stems. Therefore, we investigated how TLS data for deriving stem volume information from single trees should be collected. The broader context of the study was to determine the feasibility of replacing destructive and laborious field measurements, which have been needed for development of empirical stem volume models, with TLS. The aim of the study was to investigate the effect of the TLS data captured at various distance (i.e. corresponding 25%, 50%, 75% and 100% of tree height) on the accuracy of the stem volume derived. In addition, we examined how multiple TLS point cloud data acquired at various distances improved the results. Analysis was carried out with two ways when multiple point clouds were used: individual tree attributes were derived from separate point clouds and the volume was estimated based on these separate values (multiple-scan A), and point clouds were georeferenced as a combined point cloud from which the stem volume was estimated (multiple-scan B). This permitted us to deal with the practical aspects of TLS data collection and data processing for development of stem volume equations in boreal forests. The results indicated that a scanning distance of approximately 25% of tree height would be optimal for stem volume estimation with TLS if a single scan was utilized in boreal forest conditions studied here and scanning resolution employed. Larger distances increased the uncertainty, especially when the scanning distance was greater than approximately 50% of tree height, because the number of successfully measured diameters from the TLS point cloud was not sufficient for estimating the stem volume. When two TLS point clouds were utilized, the accuracy of stem volume estimates was improved: RMSE decreased from 12.4% to 6.8%. When two point clouds were processed separately (i.e. tree attributes were derived from separate point clouds and then combined) more accurate results were obtained; smaller RMSE and relative error were achieved compared to processing point clouds together (i.e. tree attributes were derived from a combined point cloud). TLS data collection and processing for the optimal setup in this study required only one sixth of time that was necessary to obtain the field reference. These results helped to further our knowledge on TLS in estimating stem volume in boreal forests studied here and brought us one step closer in providing best practices how a phase-shift TLS can be utilized in collecting data when developing stem volume models.