# Discrete Applied Mathematics

Discrete Applied Mathematics > 1998 > 89 > 1-3 > 143-153

Discrete Applied Mathematics > 2000 > 107 > 1-3 > 165-189

^{V}->R is called intersecting submodular if f(X)+f(Y)>=f(X Y)+f(Y X) for all intersecting X,Y V, and intersecting posi-modular if f(X)+f(Y)>=f(X-Y)+f(Y-X) for all intersecting X,Y V, where X and Y intersecting if X Y<> , X-Y<> and Y-X<> hold. We consider the polyhedron P={z R

_{-}...

Discrete Applied Mathematics > 2002 > 118 > 1-2 > 25-42

Discrete Applied Mathematics > 2003 > 127 > 3 > 555-563

Discrete Applied Mathematics > 2004 > 134 > 1-3 > 67-76

Discrete Applied Mathematics > 2004 > 138 > 3 > 349-369

Discrete Applied Mathematics > 2010 > 158 > 3 > 180-188

Discrete Applied Mathematics > 2010 > 158 > 12 > 1336-1342

Discrete Applied Mathematics > 2011 > 159 > 16 > 1736-1750

Discrete Applied Mathematics > 2012 > 160 > 4-5 > 628-639

Discrete Applied Mathematics > 2012 > 160 > 7-8 > 925-932

Discrete Applied Mathematics > 2012 > 160 > 13-14 > 2054-2059

Discrete Applied Mathematics > 2014 > 162 > Complete > 409-414

Discrete Applied Mathematics > 2014 > 162 > Complete > 42-50

Discrete Applied Mathematics > 2014 > 165 > Complete > 175-184

Discrete Applied Mathematics > 2016 > 198 > Complete > 29-47

Discrete Applied Mathematics > 2016 > 206 > C > 122-151

Discrete Applied Mathematics > 2017 > 218 > C > 1-13

Discrete Applied Mathematics > 2017 > 231 > C > 175-180