# Discrete Applied Mathematics

Discrete Applied Mathematics > 1996 > 71 > 1-3 > 153-169

^{l}

^{o}

^{g}

^{δ}

^{n}in polynomial time for any δ < 1, unless NP DTIME[2

^{p}

^{o}

^{l}

^{y}

^{l}

^{o}...

Discrete Applied Mathematics > 1997 > 79 > 1-3 > 223-245

_{1}, ,R

_{s}with upper bounds b

_{1}, , b

_{s}, n independent jobs T

_{1}, , T

_{n}of unit length, where each job T

_{j}has a start time r

_{j}N, requires one processor and an amount R

_{i}(j) {0, 1} of resource R

_{i}...

Discrete Applied Mathematics > 1998 > 86 > 2-3 > 213-231

Discrete Applied Mathematics > 1998 > 89 > 1-3 > 125-142

Discrete Applied Mathematics > 1999 > 93 > 2-3 > 149-156

_{ij}, c

_{i}⩾0 are rational numbers. Let Z∗ denote the optimal value of the problem and let ZR= ∑ j∈Jmini∈Ibij− ∑ i∈Ici. Cornuejols et al. (Ann. Discrete Math. 1 (1977) 163–178) prove that for the problem with the additional...

Discrete Applied Mathematics > 2000 > 104 > 1-3 > 281-300

Discrete Applied Mathematics > 2000 > 107 > 1-3 > 41-59

Discrete Applied Mathematics > 2001 > 108 > 1-2 > 129-142

Discrete Applied Mathematics > 2001 > 114 > 1-3 > 131-146

Discrete Applied Mathematics > 2001 > 114 > 1-3 > 255-271

^{3}logn), and a polynomial time approximation scheme of Hall (Proceedings...

Discrete Applied Mathematics > 2002 > 116 > 3 > 179-191

Discrete Applied Mathematics > 2002 > 118 > 3 > 199-207

Discrete Applied Mathematics > 2002 > 119 > 1-2 > 107-116

Discrete Applied Mathematics > 2002 > 120 > 1-3 > 73-90

Discrete Applied Mathematics > 2003 > 126 > 1 > 83-113

Discrete Applied Mathematics > 2003 > 126 > 2-3 > 275-289

^{V}->Z

^{+}, where V is the vertex set, we consider the problem of finding a minimum cost subset of hyperedges such that for every set S V, there are at least r(S) hyperedges that have at least one but no all endpoints in S. This problem captures a hypergraph generalization of the survivable...

Discrete Applied Mathematics > 2003 > 130 > 3 > 449-467

Discrete Applied Mathematics > 2003 > 131 > 3 > 655-663

Discrete Applied Mathematics > 2004 > 134 > 1-3 > 213-237

Discrete Applied Mathematics > 2004 > 134 > 1-3 > 105-128