# Applied Thermal Engineering

Applied Thermal Engineering > 2009 > 29 > 1 > 56-63

Applied Thermal Engineering > 2009 > 29 > 1 > 28-36

Applied Thermal Engineering > 2009 > 29 > 1 > 195-201

Applied Thermal Engineering > 2009 > 29 > 1 > 116-130

Applied Thermal Engineering > 2009 > 29 > 1 > 131-141

Applied Thermal Engineering > 2009 > 29 > 1 > 91-104

Applied Thermal Engineering > 2009 > 29 > 1 > 142-149

Applied Thermal Engineering > 2009 > 29 > 1 > 178-185

Applied Thermal Engineering > 2009 > 29 > 1 > 159-166

Applied Thermal Engineering > 2009 > 29 > 1 > 186-194

Applied Thermal Engineering > 2009 > 29 > 1 > 150-158

Applied Thermal Engineering > 2009 > 29 > 1 > 1-16

Applied Thermal Engineering > 2009 > 29 > 1 > 17-27

^{2}, two adsorption chillers with nominal cooling capacity of 8.5kW for each and a hot water storage tank of 2.5m

^{3}in volume. A mathematical model of the system was established. According to experimental...

Applied Thermal Engineering > 2009 > 29 > 1 > 167-177

Applied Thermal Engineering > 2009 > 29 > 1 > 47-55

Applied Thermal Engineering > 2009 > 29 > 1 > 75-90

Applied Thermal Engineering > 2009 > 29 > 1 > 105-115

Applied Thermal Engineering > 2009 > 29 > 1 > 37-46

Applied Thermal Engineering > 2009 > 29 > 1 > 64-74

^{2}. Some applications in high technologies require heat fluxes well beyond such a limitation. Therefore the search of a more efficient cooling technology becomes one of the bottleneck problems of the further development...