# Journal of Statistical Planning and Inference

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 1-18

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 147-156

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 41-66

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 271-287

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 289-300

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 215-228

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 205-213

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 87-95

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 19-40

_{i}(k, p) and B

_{i}(k, 12) is simply the pure distribution B

_{i}(k,12). This problem arises in determining whether we have a genetic marker for a gene responsible for a heterogeneous trait, that is a trait which is caused by any one of several genes. In that event we would...

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 107-120

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 169-184

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 243-255

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 301-310

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 133-145

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 257-270

_{n}

_{p}(μ, Σ

_{Y}, φ) distribution and P(Y = μ) < 1. Let i = 1, 2, , L, W

_{i}be an n n nonnegative definite (n.n.d.) matrix, and m

_{i}{1, 2, }, Q

_{i}(Y) = (Y - μ) W

_{i}(Y - μ) and Σ(≠ 0) be a p p n.n.d. matrix. Then (a) and (b) are equivalent:(a) (Q...

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 185-195

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 121-132

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 67-75

Journal of Statistical Planning and Inference > 1995 > 43 > 1-2 > 157-167