Beta-lactam antibiotics are the only clinically approved drugs which directly increase glutamate uptake. They activate the glutamate transporter subtype 1 (GLT-1), the protein responsible for 90% of glutamate uptake in the mammalian brain. The capacity of GLT-1 to clear extracellular glutamate suggests that glutamate transporter activators be explored for therapeutic approaches to clinical conditions caused by increased glutamatergic transmission. One of the most common drug effects mediated by increased glutamatergic signaling is opioid tolerance. Therefore, we tested the hypothesis that a beta-lactam antibiotic (ceftriaxone), by increasing glutamate uptake, prevents tolerance to hypothermia induced by a kappa opioid receptor agonist (U-50,488H). A single injection of U-50,488H (20mg/kg, s.c.) caused significant hypothermia in rats. Tolerance to the hypothermic effect of U50,488H was induced by injecting U50,488H (20mg/kg) twice daily for 7days. Pretreatment with ceftriaxone (200mg/kg, i.p.) for 7days did not alter the acute hypothermic response to U50,488H (20mg/kg) but did prevent tolerance to U50,488H-induced hypothermia. Central administration of dl-threo-β-benzyloxyaspartic acid (TBOA) (0.2μmol, i.c.v.), a glutamate transporter inhibitor, abolished the effect of ceftriaxone. These results identify a functional interaction between ceftriaxone and U50,488H in vivo and provide pharmacological evidence that a beta-lactam antibiotic abolishes tolerance to hypothermia induced by a kappa opioid receptor agonist.