# Fundamenta Informaticae

Fundamenta Informaticae > 2019 > Vol. 164, nr 1 > 61--101

Fundamenta Informaticae > 2019 > Vol. 164, nr 1 > 41--59

Fundamenta Informaticae > 2019 > Vol. 164, nr 1 > 17--39

Fundamenta Informaticae > 2019 > Vol. 164, nr 1 > 119--138

^{2}by two congruent disks of minimum size. Here, the points can be added or deleted in the set P, and the objective is to maintain a data structure that, at any instant of time, can efficiently report two disks of minimum size whose union completely covers the boundary of the convex hull of the point set...

Fundamenta Informaticae > 2019 > Vol. 164, nr 1 > 103--117

Fundamenta Informaticae > 2019 > Vol. 164, nr 1 > 1--15

^{ω}

^{λ}; ×,ω,ω+1,ω

^{2}+1) for every ordinal λ. Moreover, we prove (by reduction from Hilbert Tenth Problem) that the ∃*∀

^{6}-fragment of (ω

^{ω λ}; ×) is undecidable for every ordinal λ.

Fundamenta Informaticae > 2019 > Vol. 164, nr 2-3 > 227--242

Fundamenta Informaticae > 2019 > Vol. 164, nr 2-3 > 243--257

Fundamenta Informaticae > 2019 > Vol. 164, nr 2-3 > 277--288

Fundamenta Informaticae > 2019 > Vol. 164, nr 2-3 > 207--225

Fundamenta Informaticae > 2019 > Vol. 164, nr 2-3 > 139--155

Fundamenta Informaticae > 2019 > Vol. 164, nr 2-3 > 259--275

Fundamenta Informaticae > 2019 > Vol. 164, nr 2-3 > 157--180

Fundamenta Informaticae > 2019 > Vol. 164, nr 2-3 > 195--205

Fundamenta Informaticae > 2019 > Vol. 164, nr 2-3 > 289--298

Fundamenta Informaticae > 2019 > Vol. 164, nr 2-3 > 181--194

Fundamenta Informaticae > 2019 > Vol. 164, nr 4 > 299--325

^{0}

_{2}–complete. Thus, it admits a kind of a truth definition. We define such an arithmetical predicate. Then, we define its modal logic SL and prove a completeness theorem with respect to finite models semantics. The proof that SL is the modal logic of the approximate truth definition for finite...

Fundamenta Informaticae > 2019 > Vol. 164, nr 4 > 359--373

Fundamenta Informaticae > 2019 > Vol. 164, nr 4 > 375--386

_{ø}(H

_{12}) and L

_{ø}(H

_{10}).

Fundamenta Informaticae > 2019 > Vol. 164, nr 4 > 345--358