
[1] A. D. Iskenderov, G. Ya. Yagubov, A variational method for solving the inverse problem of determining the quantum mechanical potential, Soviet Math. Dokl.(English Trans.). AMS 38(1989)

[2] A. D. Iskenderov, G. Ya. Yagubov, Optimal control of nonlinear quantummechanical systems, Automatica and Telemechanic 12(1989) 2738

[3] A. D. Iskenderov, Definition of a potential in Schrödingers’ nonstationary equation. In: Problemi moton. Modelşrovania and opmolno go upravleva, Bakü, 2001, pp.636 (in Russian)

[4] M. Goebel, On existence of optimal control, Math. Nachr. 1979. Vol.93, pp.6773

[5] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971

[6] E. Zuazua, Remarks on the controllability of the Schrödinger equation, Quantum control: mathematical and numerical challenges, 2003, Vol.33, pp. 193211

[7] E. Zuazua, An introduction to the controllability of partial differential equations, Quelques questions de théorie du contrôle, 2004,

[8] E. Zuazua, Controllability of partial differential equations and its semidiscrete approximations, Discrete and continuous dynamical systems, 2004, 8 (2), 469517

[9] N.Y. Aksoy, B. Yildiz, H. Yetiskin, Variational problem with complex coeflcient of a nonlinear Schrödinger equation Proceedings of the Indian Academy of Sciences:Mathematical Sciences, 2012, 122 (3), pp. 469484

[10] Y. Koçak, E. Çelik, Optimal control problem for stationary quasioptic equations, Boundary Value Problems 2012, 2012:151