# Search results for: Gyula Pap

Journal of Statistical Theory and Practice > 2019 > 13 > 1 > 1-25

Statistical Inference for Stochastic Processes > 2019 > 22 > 1 > 41-75

Journal of Mathematical Analysis and Applications > 2017 > 451 > 1 > 524-543

Lecture Notes in Statistics - Proceedings > Workshop on Branching Processes and Their Applications > Limit Theorems and Statistics > 135-146

Statistics & Probability Letters > 2016 > 118 > C > 16-23

Discrete Optimization > 2016 > 22 > PB > 277-290

Lecture Notes in Computer Science > Integer Programming and Combinatorial Optimization > Session 4 > 139-151

Statistical Inference for Stochastic Processes > 2018 > 21 > 1 > 169-190

Mathematical Programming > 2017 > 161 > 1-2 > 583-601

*Y*be a stable random vector in a real, separable Banach space

*B*. Suppose that the distribution of

*Y*has infinite dimensional support and the space

*B*has smooth enough norm and

*B*is uniformly convex with power order (see in the paper). We prove that the density

*p*

_{ b }

*(x)*of the distribution function

*F*

_{ b }

*(x)*=

*P*{‖

*Y*...

Lecture Notes in Computer Science > Integer Programming and Combinatorial Optimization > Session 5 > 167-181

Journal of Theoretical Probability > 2016 > 29 > 3 > 958-995

Lithuanian Mathematical Journal > 2016 > 56 > 1 > 1-15

Journal of Statistical Planning and Inference > 2015 > 167 > C > 182-192

Journal of Multivariate Analysis > 2015 > 139 > Complete > 92-123

Aequationes mathematicae > 2015 > 89 > 6 > 1485-1507

Scandinavian Journal of Statistics > 41 > 4 > 866 - 892