# Search results for: Jiuying Dong

Information Fusion > 2018 > 40 > Complete > 87-100

European Journal of Operational Research > 2017 > 263 > 2 > 571-582

Graphs and Combinatorics > 2016 > 32 > 5 > 1829-1841

*G*, the minimum number of colors that are needed to make

*G*rainbow connected is called the rainbow connection number of

*G*, denoted by rc(

*G*). In this paper,...

Journal of Computer and System Sciences > 2014 > 80 > 1 > 237-256

Graphs and Combinatorics > 2013 > 29 > 6 > 1733-1739

*G*be a connected graph. The notion of rainbow connection number

*rc*(

*G*) of a graph

*G*was introduced by Chartrand et al. (Math Bohem 133:85–98, 2008). Basavaraju et al. (arXiv:1011.0620v1 [math.CO], 2010) proved that for every bridgeless graph

*G*with radius

*r*, $${rc(G)\leq r(r+2)}$$ and the bound is tight. In this paper, we show that for a connected graph

*G*with radius

*r*and center vertex

*u*,...

Journal of Applied Mathematics and Computing > 2010 > 34 > 1-2 > 485-493

*G*, let

*σ*

_{2}(

*G*):=min {

*d*(

*u*)+

*d*(

*v*)|

*uv*

*∉*

*E*(

*G*),

*u*≠

*v*}. In the paper, the main results of this paper are as follows: (1) Let

*k*≥2 be an integer and

*G*be a graph of order

*n*≥3

*k*, if

*σ*

_{2}(

*G*)≥

*n*+2

*k*−2, then for any set of

*k*distinct vertices

*v*

_{1},…,

*v*

_{ k },

*G*has

*k*vertex-disjoint...

2009 WRI Global Congress on Intelligent Systems > 4 > 389 - 392

Discrete Mathematics > 2008 > 308 > 22 > 5269-5273

Graphs and Combinatorics > 2008 > 24 > 2 > 71-80

*G*, we define σ

_{2}(

*G*) :=

*min*{

*d*(

*u*) +

*d*(

*v*)|

*u*,

*v*≠ ∈

*E*(

*G*),

*u*≠

*v*}. Let

*k*≥ 1 be an integer and

*G*be a graph of order

*n*≥ 3

*k*. We prove if σ

_{2}(

*G*) ≥

*n*+

*k*− 1, then for any set of

*k*independent vertices

*v*

_{1},...,

*v*

_{ k },

*G*has

*k*vertex-disjoint cycles

*C*

_{1},...,

*C*

_{ k }of length at most four such that

*v*

_{ i }∈

*V*(

*C*

_{ i }) for all 1 ≤

*i*≤

*k*. And show if σ

_{2}(

*G*) ≥

*n*+

*k*− 1, then for any set of

*k*independent...