The Infona portal uses cookies, i.e. strings of text saved by a browser on the user's device. The portal can access those files and use them to remember the user's data, such as their chosen settings (screen view, interface language, etc.), or their login data. By using the Infona portal the user accepts automatic saving and using this information for portal operation purposes. More information on the subject can be found in the Privacy Policy and Terms of Service. By closing this window the user confirms that they have read the information on cookie usage, and they accept the privacy policy and the way cookies are used by the portal. You can change the cookie settings in your browser.
In this article we present the existence and uniqueness results for fractional integro-differential equations with ψ-Hilfer fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Mönch fixed point theorem and the Banach fixed point theorem. Furthermore, we discuss Eα-Ulam-Hyers stability of the presented problem. Also, we use the generalized...
In this paper, we investigate the existence, uniqueness and Ulam-Hyers stability of solutions for nonlinear implicit fractional differential equations with boundary conditions involving a ψ-Caputo fractional derivative. The obtained results for the proposed problem are proved under a new approach and minimal assumptions on the function ƒ. The analysis is based upon the reduction of the problem considered...
This paper is concerned with a boundary value problem for a nonlinear fractional differential equation involving a general form of Caputo fractional derivative operator with respect to new function $$\psi $$ ψ . The existence and uniqueness results of solutions are obtained. Our analysis relies on a variety of tools of fractional calculus together with fixed point theorems of Banach and Schaefer....
Set the date range to filter the displayed results. You can set a starting date, ending date or both. You can enter the dates manually or choose them from the calendar.