# Search results for: Theodoros Vlachos

The Journal of Geometric Analysis > 2019 > 29 > 2 > 1320-1355

The Journal of Geometric Analysis > 2019 > 29 > 1 > 413-427

Geometriae Dedicata > 2018 > 196 > 1 > 11-26

Mathematische Zeitschrift > 2017 > 287 > 1-2 > 481-491

manuscripta mathematica > 2016 > 150 > 1-2 > 73-98

*a*-invariants, that determine the geometry of the higher order curvature ellipses and satisfy certain...

Geometriae Dedicata > 2015 > 178 > 1 > 259-275

Geometriae Dedicata > 2013 > 166 > 1 > 289-305

Monatshefte für Mathematik > 2008 > 154 > 1 > 51-58

*M*

^{ n },〈,〉) be an

*n*-dimensional Riemannian manifold and $f:(M^{n},\langle \,,\rangle)\rightarrow {\Bbb R}^{n+1}$ an isometric immersion. Find all Riemannian metrics on

*M*

^{ n }that can be realized isometrically as immersed hypersurfaces in the Euclidean space . More precisely, given another Riemannian metric ...

manuscripta mathematica > 2008 > 126 > 2 > 201-230

Annali di Matematica Pura ed Applicata ( 01923 -) > 2008 > 187 > 1 > 137-155

Differential Geometry and its Applications > 2005 > 23 > 3 > 327-350

Monatshefte für Mathematik > 2005 > 145 > 4 > 301-305

*S*of the second fundamental form satisfies

*S*≥

*n*, then

*S*=

*n*and

*f*(

*M*

^{ n }) is a minimal Clifford torus.

Archiv der Mathematik > 2005 > 85 > 2 > 175-182

*S*

^{4}. More precisely, we prove that a compact minimal surface in

*S*

^{4}, with induced metric

*ds*

^{2}and Gaussian curvature

*K*, for which the metric $$d\sigma ^2 = (1 - K)^{\frac{1}{m}} ds^2 $$ is flat away from points where

*K*= 1, is the Clifford torus, provided that m is an integer with

*m*> 2.

manuscripta mathematica > 2003 > 110 > 1 > 77-91

Annals of Global Analysis and Geometry > 1999 > 17 > 2 > 129-150

Geometriae Dedicata > 1997 > 68 > 1 > 73-78