# Search results for: Mark van Hoeij

Journal of Symbolic Computation > 2018 > 85 > C > 108-127

Journal of Symbolic Computation > 2017 > 83 > C > 254-271

European Journal of Combinatorics > 2017 > 61 > C > 242-275

Journal of Algebra > 2015 > 441 > Complete > 609-659

Journal of Algebra > 2014 > 417 > Complete > 52-71

Journal of Symbolic Computation > 2013 > 52 > Complete > 17-34

Journal of Algebra > 2006 > 296 > 1 > 18-55

Applicable Algebra in Engineering, Communication and Computing > 2006 > 17 > 2 > 83-115

Journal of Symbolic Computation > 2004 > 38 > 3 > 1043-1076

Journal of Number Theory > 2002 > 95 > 2 > 167-189

Banach Center Publications > 2002 > 58 > 1 > 89-96

Physica D: Nonlinear Phenomena > 2001 > 152-153 > 28-46

Journal of Symbolic Computation > 1999 > 28 > 4-5 > 589-609

Journal of Symbolic Computation > 1997 > 24 > 5 > 537-561

Journal of Symbolic Computation > 1997 > 24 > 1 > 1-30

Journal of Symbolic Computation > 1997 > 23 > 2-3 > 209-227

_{2}in the projective plane. We present an algorithm that uses an integral basis for computingL(D) for a suitably chosenD. The advantage of an integral basis is that it contains all the necessary information about the singularities, so once the integral...

Journal of Pure and Applied Algebra > 1997 > 117-118 > 353-379

^{m}(V(L)) that are left fixed by the Galois group. The bottleneck of previous methods is the construction of a differential...