# Search results for: Sun‐Sig Byun

Mathematische Nachrichten > 293 > 4 > 651 - 669

Calculus of Variations and Partial Differential Equations > 2019 > 58 > 6 > 1-27

*p*-Laplacian type with inhomogeneous boundary and initial data, with $$p\in (\frac{2n}{n+2},\infty )$$ p∈(2nn+2,∞) . We show bounds on the gradient of solutions in the Lebesgue-spaces with arbitrary large integrability exponents and natural dependences on the right hand side and the boundary data. In particular, we provide a new proof of...

Applied Mathematics Letters > 2018 > 86 > C > 256-263

Journal of Mathematical Analysis and Applications > 2018 > 467 > 2 > 1194-1207

Calculus of Variations and Partial Differential Equations > 2018 > 57 > 5 > 1-19

*n*-dimensional Reifenberg flat domains. The nonlinear term of the elliptic differential operator is supposed to be small-BMO with respect to...

Mathematische Zeitschrift > 2018 > 290 > 3-4 > 973-990

Applied Mathematics Letters > 2018 > 76 > C > 227-235

Journal of Differential Equations > 2018 > 264 > 2 > 1263-1316

Journal of Dynamics and Differential Equations > 2018 > 30 > 4 > 1945-1966

Annales de l'Institut Henri Poincare (C) Non Linear Analysis > 2017 > 34 > 7 > 1639-1667

Nonlinear Analysis: Theory, Methods & Applications > 2017 > 162 > C > 178-196

Journal of Mathematical Analysis and Applications > 2017 > 453 > 1 > 32-47

Journal of Differential Equations > 2017 > 263 > 2 > 1643-1693

Mathematische Nachrichten > 290 > 8-9 > 1249 - 1259

Journal of Functional Analysis > 2017 > 272 > 10 > 4103-4121

Calculus of Variations and Partial Differential Equations > 2017 > 56 > 3 > 1-29

*p*(

*x*)-Laplacian problem $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} - \text{ div } \left( |\nabla u|^{p(x)-2} \nabla u\right) =\frac{ \lambda }{u^{\beta (x)}}+u^{q(x)}, &{} \text{ in }\quad \Omega , \\ u>0, &{} \text{ in }\quad \Omega , \\ u=0, &{} \text{ on }\quad \partial \Omega , \end{array}\right. \end{aligned}$$ ...

Calculus of Variations and Partial Differential Equations > 2017 > 56 > 2 > 1-36

Journal of Elliptic and Parabolic Equations > 2015 > 1 > 1 > 49-61

*p*-Laplacian type that is not necessarily of variational form. A global maximal regularity is obtained for such a problem by proving that the gradient of the weak solution is as globally integrable as the nonhomogeneous term in weighted Orlicz spaces under minimal conditions on the nonlinearity and the domain. We find not...

Journal of Differential Equations > 2016 > 261 > 12 > 6790-6805

Nonlinear Analysis: Theory, Methods & Applications > 2016 > 147 > C > 176-190