# Search results for: Dong-Hyun Cho

International Journal of Aeronautical and Space Sciences > 2018 > 19 > 2 > 478-495

Czechoslovak Mathematical Journal > 2017 > 67 > 3 > 609-628

*C*[0,

*t*] denote a generalized Wiener space, the space of real-valued continuous functions on the interval [0,

*t*], and define a random vector

*Z*

_{n}:

*C*[0,

*t*] →

*R*

^{n+1}by $${Z_n}\left( x \right) = \left( {x\left( 0 \right) + a\left( 0 \right),\int_o^{{t_1}} {h\left( s \right)dx\left( s \right) + x\left( 0 \right) + a\left( {{t_1}} \right),...,\int_0^{{t_n}} {h\left( s \right)dx\left( s \right) + x\left(...

International Journal of Control, Automation and Systems > 2017 > 15 > 4 > 1729-1737

Acta Astronautica > 2012 > 72 > Complete > 47-61

IEEE Transactions on Nuclear Science > 2010 > 57 > 3-2 > 1496 - 1501

Central European Journal of Mathematics > 2010 > 8 > 3 > 616-632

*S*on the classical Wiener space. Chang, Kim and Yoo extended these results to abstract Wiener space for a more generalized Fresnel class $$ \mathcal{F}_{\mathcal{A}_1 ,\mathcal{A}_2 } $$

_{ A1,A2}than the Fresnel class $$ \mathcal{F} $$ (

*B*)which corresponds...

Central European Journal of Mathematics > 2010 > 8 > 5 > 908-927

*C*

_{0}

^{ r }[0;

*t*] denote the analogue of the

*r*-dimensional Wiener space, define

*X*

_{ t }:

*C*

^{ r }[0;

*t*] → ℝ

^{2r }by

*X*

_{ t }(

*x*) = (

*x*(0);

*x*(

*t*)). In this paper, we introduce a simple formula for the conditional expectations with the conditioning function

*X*

_{ t }. Using this formula, we evaluate the conditional analytic Feynman integral for the functional $$ \Gamma _t \left( x \right) = exp \left\{ {\int_0^t...

Journal of Mathematical Analysis and Applications > 2009 > 359 > 2 > 421-438

2009 IEEE Sensors > 1244 - 1247

Czechoslovak Mathematical Journal > 2009 > 59 > 2 > 431-452

*C*[0,

*T*] denote the space of real-valued continuous functions on the interval [0,

*T*] with an analogue

*w*

_{ϕ}of Wiener measure and for a partition 0 =

*t*

_{0}<

*t*

_{1}< ... <

*t*

_{ n }<

*t*

_{ n+1}=

*T*of [0,

*T*], let

*X*

_{ n }:

*C*[0,

*T*] → ℝ

^{ n+1}and

*X*

^{ n+1}:

*C*[0,

*T*] → ℝ

^{ n+2}be given by

*X*

_{ n }(

*x*) = (

*x*(

*t*

_{0}),

*x*(

*t*

_{1}), ...,

*x*(

*t*

_{ n })) and

*X*

_{ n+1}(

*x*) = (

*x*(

*t*

_{0}),

*x*(

*t*

_{1}), ...,

*x*(

*t*

_{ n+1})), respectively. In this paper,...

Optical Review > 2009 > 16 > 3 > 383-386

Optical Review > 2009 > 16 > 3 > 387-391

IEEE Transactions on Nuclear Science > 2008 > 55 > 5-2 > 2627 - 2631

IEEE Transactions on Nuclear Science > 2008 > 55 > 5-2 > 2632 - 2636