# Search results for: Michael Gentner

Journal of Graph Theory > 88 > 1 > 131 - 145

*d*of nonnegative integers, let $G\left(d\right)$ and $F\left(d\right)$ be the sets of all graphs and forests with degree sequence

*d*, respectively. Let ${\gamma}_{min}\left(d\right)=min\{\gamma \left(G\right):G\in G\left(d\right)\}$, ${\alpha}_{max}\left(d\right)=max\{\alpha \left(G\right):G\in G\left(d\right)\}$, ${\gamma}_{min}^{F}\left(d\right)=min\{\gamma \left(F\right):F\in F\left(d\right)\}$, and ${\alpha}_{max}^{F}\left(d\right)=max\{\alpha \left(F\right):F\in F\left(d\right)\}$ where $\gamma \left(G\right)$ is the domination number and $\alpha \left(G\right)$ is the independence number of a graph

*G*. Adapting results of Havel and Hakimi, Rao showed in 1979 that ${\alpha}_{max}$...

Discrete Applied Mathematics > 2018 > 236 > C > 203-213

Discrete Mathematics > 2018 > 341 > 1 > 119-125

Discrete Mathematics > 2017 > 340 > 7 > 1497-1502

Theoretical Computer Science > 2017 > 667 > C > 93-100

Discrete Applied Mathematics > 2016 > 214 > C > 196-200

Discrete Mathematics > 2016 > 339 > 7 > 1878-1883

Discrete Applied Mathematics > 2016 > 206 > C > 181-187

Discrete Mathematics > 2015 > 338 > 12 > 2179-2185

Nuclear Physics, Section A > 1997 > 622 > 1-2 > 187c-225c