# Search results for: Oussama Hijazi

Communications in Mathematical Physics > 2017 > 351 > 3 > 1177-1194

*n*-dimensional time flat submanifolds in the Minkowski spacetime as well as in the anti-de Sitter spacetime.

Journal of Geometry and Physics > 2015 > 91 > Complete > 12-28

Annals of Global Analysis and Geometry > 2015 > 47 > 2 > 167-178

Calculus of Variations and Partial Differential Equations > 2013 > 48 > 3-4 > 527-544

*M*be a compact orientable

*n*-dimensional hypersurface, with nowhere vanishing mean curvature

*H*, immersed in a Riemannian spin manifold $${\overline{M}}$$ admitting a non trivial parallel spinor field. Then the first eigenvalue $${\lambda_1(D_{M}^{H})}$$ (with the lowest absolute value) of the Dirac operator $${D_{M}^{H}}$$ corresponding to the conformal metric $${\langle\;,\;\rangle^{H}=H^{2}\,\langle\;,\;\rangle}$$...

Mathematische Zeitschrift > 2012 > 271 > 1-2 > 357-372

Mathematische Zeitschrift > 2003 > 244 > 2 > 337-347

Annals of Global Analysis and Geometry > 2003 > 23 > 3 > 247-264

Communications in Mathematical Physics > 2002 > 231 > 3 > 375-390

Annals of Global Analysis and Geometry > 2001 > 20 > 2 > 163-181

Annals of Global Analysis and Geometry > 2001 > 19 > 4 > 355-376

Letters in Mathematical Physics > 2001 > 58 > 1 > 7-20

Communications in Mathematical Physics > 2001 > 221 > 2 > 255-265

Journal of Geometry and Physics > 1995 > 16 > 1 > 27-38

Journal of Geometry and Physics > 1995 > 15 > 4 > 320-332

^{4}

^{m}, we give the spectral decomposition of the spin bundle under the action of the fundamental 4-form Ω. Moreover, we compute the eigenvalues of Ω which, in the compact case, play an essential role in the problem of estimating the eigenvalues of the Dirac operator. The proof is based on the decomposition of the spin representation into irreducible...