# Search results for: Sergio Bermudo

Discussiones Mathematicae Graph Theory > 2017 > 38 > 1 > 301-317

Discrete Applied Mathematics > 2017 > 232 > C > 64-72

Discrete Mathematics > 2016 > 339 > 12 > 3073-3084

Theoretical Computer Science > 2015 > 562 > Complete > 330-345

Electronic Notes in Discrete Mathematics > 2014 > 46 > Complete > 281-288

Electronic Notes in Discrete Mathematics > 2014 > 46 > Complete > 265-272

Discrete Mathematics > 2013 > 313 > 15 > 1575-1585

Discrete Applied Mathematics > 2013 > 161 > 10-11 > 1618-1625

Computers and Mathematics with Applications > 2011 > 62 > 12 > 4592-4595

Applied Mathematics Letters > 2011 > 24 > 11 > 1882-1887

Discrete Applied Mathematics > 2011 > 159 > 4 > 224-231

Acta Mathematica Sinica, English Series > 2011 > 27 > 1 > 73-82

*k*-alliance in a graph is a set

*S*of vertices with the property that every vertex in

*S*has at least

*k*more neighbors in

*S*than it has outside of

*S*. A defensive

*k*-alliance

*S*is called global if it forms a dominating set. In this paper we study the problem of partitioning the vertex set of a graph into (global) defensive

*k*-alliances. The (global) defensive

*k*-alliance partition number of a...

Acta Mathematica Sinica, English Series > 2011 > 27 > 3 > 497-504

*defensive*(

*offensive*)

*k*-

*alliance*in Γ = (

*V,E*) is a set

*S*⊆

*V*such that every

*υ*in

*S*(in the boundary of

*S*) has at least

*k*more neighbors in

*S*than it has in

*V*/

*S*. A set

*X*⊆

*V*is

*defensive*(

*offensive*)

*k-alliance free*, if for all defensive (offensive)

*k*-alliance

*S, S*/

*X*≠ ∅, i.e.,

*X*does not contain any defensive (offensive)

*k*-alliance as a subset. A set

*Y*⊆

*V*is a

*defensive*(

*offensive*)

*k-alliance cover*...

Applied Mathematics Letters > 2010 > 23 > 12 > 1454-1458

Journal of Mathematical Analysis and Applications > 2008 > 345 > 1 > 372-386

Journal de mathematiques pures et appliquees > 2008 > 89 > 2 > 145-173