# Search results for: Xueliang Li

Applied Mathematics and Computation > 2017 > 305 > C > 27-31

Journal of Combinatorial Optimization > 2017 > 33 > 4 > 1443-1453

*T*in an edge-colored (vertex-colored) graph

*H*is called a

*monochromatic (vertex-monochromatic) tree*if all the edges (internal vertices) of

*T*have the same color. For $$S\subseteq V(H)$$ S ⊆ V ( H ) , a

*monochromatic (vertex-monochromatic) S-tree*in

*H*is a monochromatic (vertex-monochromatic) tree of

*H*containing the vertices of

*S*. For a connected graph

*G*and a given integer

*k*with...

Applied Mathematics and Computation > 2015 > 258 > Complete > 155-161

Bulletin of the Malaysian Mathematical Sciences Society > 2015 > 38 > 3 > 1235-1241

Journal of Combinatorial Optimization > 2012 > 24 > 3 > 389-396

*G*be a nontrivial connected graph of order

*n*and let

*k*be an integer with 2≤

*k*≤

*n*. For a set

*S*of

*k*vertices of

*G*, let

*κ*(

*S*) denote the maximum number

*ℓ*of edge-disjoint trees

*T*

_{1},

*T*

_{2},…,

*T*

_{ ℓ }in

*G*such that

*V*(

*T*

_{ i })∩

*V*(

*T*

_{ j })=

*S*for every pair

*i*,

*j*of distinct integers with 1≤

*i*,

*j*≤

*ℓ*. Chartrand et al. generalized the concept of connectivity as follows: The

*k*-

*connectivity*, denoted by

*κ*

_{ k }(

*G*), of

*G*is...

Applied Mathematics Letters > 2009 > 22 > 3 > 320-324

Theoretical Computer Science > 2008 > 396 > 1-3 > 151-157

Discrete Mathematics > 2008 > 308 > 7 > 1334-1340

Discussiones Mathematicae Graph Theory > 1997 > 17 > 2 > 259-269