# Search results for: Uday Chand De

Chinese Annals of Mathematics, Series B > 2020 > 41 > 1 > 133-146

*P*-Sasakian manifold and study the second order parallel tensor in a

*P*-Sasakian manifold with respect to the quarter-symmetric metric connection. Then Ricci semisymmetric

*P*-Sasakian manifold with respect to the quarter-symmetric metric connection is considered. Next the authors study

*ξ*-concircularly flat

*P*-Sasakian manifolds and concircularly...

Journal of Geometry > 2019 > 110 > 2 > 1-12

Analysis and Mathematical Physics > 2019 > 9 > 3 > 1333-1345

*Q*-symmetric spacetimes $$(PQS)_{4}$$ ( P Q S ) 4 . At first, we prove that a $$(PQS)_{4}$$ ( P Q S ) 4 spacetime is a quasi-Einstein spacetime. Then we investigate perfect fluid $$(PQS)_{4}$$ ( P Q S ) 4 spacetimes and interesting properties are pointed out. From a result of Mantica and Suh (Int J Geom Methods Mod Phys 10:1350013, 2013)...

Proceedings of the National Academy of Sciences, India Section A: Physical... > 2018 > 88 > 2 > 223-230

Journal of Geometry > 2017 > 108 > 3 > 1039-1053

Afrika Matematika > 2015 > 26 > 7-8 > 1229-1236

Afrika Matematika > 2015 > 26 > 1-2 > 131-138

Proceedings of the National Academy of Sciences, India Section A: Physical... > 2013 > 83 > 3 > 239-245

*N*(

*k*)-quasi Einstein manifolds. We study an

*N*(

*k*)-quasi Einstein manifold satisfying the conditions $$S{\cdot} R=0, R{\cdot} C=f\hat{Q}(g,C)$$ S · R = 0 , R · C = f Q ˆ ( g , C ) . Next we prove that the curvature condition $$C{\cdot} S=0$$ C · S = 0 holds in an

*N*(

*k*)-quasi Einstein manifold. Then we study an

*N*(

*k*)-quasi Einstein manifold...

Proceedings of the National Academy of Sciences, India Section A: Physical... > 2013 > 83 > 2 > 137-141

*S*.

*C*= 0 is also considered.

Proceedings of the National Academy of Sciences, India Section A: Physical... > 2013 > 83 > 2 > 143-152

*GR*

_{ n }is also studied.

Czechoslovak Mathematical Journal > 2012 > 62 > 4 > 1055-1072

International Journal of Theoretical Physics > 2012 > 51 > 9 > 2878-2887

Indagationes Mathematicae > 2009 > 20 > 2 > 191-200